• Title/Summary/Keyword: Data Reconstruction

Search Result 1,465, Processing Time 0.027 seconds

Improved Reconstruction Algorithm for Spiral Scan Fast MR Imaging with DC offset Correction (DC offset을 보정한 나선 주사 초고속 자기공명영상의 재구성 알고리즘)

  • 안창범;김휴정
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.243-250
    • /
    • 1998
  • Reconstruction aspects of spiral scan imaging for ultra fast magnetic resonance imagine(MRI) have been investigated with polar and rectangular coordinates-based reconstruction. For the reconstruction of the spiral scan imaging, acquired data in spiral trjectory should be converted to polar or rectangular grids, where interpolation techniques are used. Various reconstruction algorithms for spiral scan imaging are tested, and reconstructed image qualities are compared with computed phantom. An improved reconstruction algorithm with dc-offset correction in projection domain is proposed, which provides the best reconstructed image quality from the simulation. Image artifact with existing algorithms is completely removed with the proposed method.

  • PDF

Accelerating Magnetic Resonance Fingerprinting Using Hybrid Deep Learning and Iterative Reconstruction

  • Cao, Peng;Cui, Di;Ming, Yanzhen;Vardhanabhuti, Varut;Lee, Elaine;Hui, Edward
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.293-299
    • /
    • 2021
  • Purpose: To accelerate magnetic resonance fingerprinting (MRF) by developing a flexible deep learning reconstruction method. Materials and Methods: Synthetic data were used to train a deep learning model. The trained model was then applied to MRF for different organs and diseases. Iterative reconstruction was performed outside the deep learning model, allowing a changeable encoding matrix, i.e., with flexibility of choice for image resolution, radiofrequency coil, k-space trajectory, and undersampling mask. In vivo experiments were performed on normal brain and prostate cancer volunteers to demonstrate the model performance and generalizability. Results: In 400-dynamics brain MRF, direct nonuniform Fourier transform caused a slight increase of random fluctuations on the T2 map. These fluctuations were reduced with the proposed method. In prostate MRF, the proposed method suppressed fluctuations on both T1 and T2 maps. Conclusion: The deep learning and iterative MRF reconstruction method described in this study was flexible with different acquisition settings such as radiofrequency coils. It is generalizable for different in vivo applications.

Performance Analysis of the reconstruction Algorithms in the Stripmap-mode SAR (Stripmap-mode SAR에서의 영상복원 알고리즘의 성능분석)

  • 박현복;김형주;최정희
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.29-33
    • /
    • 2000
  • The classical image reconstruction for stripmap SAR is based on the Fresnel approximation which utilizes deramping or chirp deconvolution in the synthetic aperture(slow-time) domain. Another approach in formulating stripmap SAR processing and imaging is based on the SAR wavefront reconsturction theory, and analysis of the SAR signal in the slow-time via the spherical wave Fourier decomposition of the radar radiation pattern. In this paper, we compare the Fresnel approximation and the wavefrong reconstruction methods using simulated stripmap SAR dada.

  • PDF

Statistical Methods for Tomographic Image Reconstruction in Nuclear Medicine (핵의학 단층영상 재구성을 위한 통계학적 방법)

  • Lee, Soo-Jin
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.118-126
    • /
    • 2008
  • Statistical image reconstruction methods have played an important role in emission computed tomography (ECT) since they accurately model the statistical noise associated with gamma-ray projection data. Although the use of statistical methods in clinical practice in early days was of a difficult problem due to high per-iteration costs and large numbers of iterations, with the development of fast algorithms and dramatically improved speed of computers, it is now inevitably becoming more practical. Some statistical methods are indeed commonly available from nuclear medicine equipment suppliers. In this paper, we first describe a mathematical background for statistical reconstruction methods, which includes assumptions underlying the Poisson statistical model, maximum likelihood and maximum a posteriori approaches, and prior models in the context of a Bayesian framework. We then review a recent progress in developing fast iterative algorithms.

New Geometric modeling method: reconstruction of surface using Reverse Engineering techniques

  • Jihan Seo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.565-574
    • /
    • 1999
  • In reverse engineering area, it is rapidly developing reconstruction of surfaces from scanning or digitizing data, but geometric models of existing objects unavailable many industries. This paper describes new methodology of reverse engineering area, good strategies and important algorithms in reverse engineering area. Furthermore, proposing reconstruction of surface technique is presented. A method find base geometry and blending surface between them. Each based geometry is divided by triangular patch which are compared their normal vector for face grouping. Each group is categorized analytical surface such as a part of the cylinder, the sphere, the cone, and the plane that mean each based geometry surface. And then, each based geometry surface is implemented infinitive surface. Infinitive average surface's intersections are trimmed boundary representation model reconstruction. This method has several benefits such as the time efficiency and automatic functional modeling system in reverse engineering. Especially, it can be applied 3D scanner and 3D copier.

  • PDF

Fast 3D reconstruction method based on UAV photography

  • Wang, Jiang-An;Ma, Huang-Te;Wang, Chun-Mei;He, Yong-Jie
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.788-793
    • /
    • 2018
  • 3D reconstruction of urban architecture, land, and roads is an important part of building a "digital city." Unmanned aerial vehicles (UAVs) are gradually replacing other platforms, such as satellites and aircraft, in geographical image collection; the reason for this is not only lower cost and higher efficiency, but also higher data accuracy and a larger amount of obtained information. Recent 3D reconstruction algorithms have a high degree of automation, but their computation time is long and the reconstruction models may have many voids. This paper decomposes the object into multiple regional parallel reconstructions using the clustering principle, to reduce the computation time and improve the model quality. It is proposed to detect the planar area under low resolution, and then reduce the number of point clouds in the complex area.

Tomographic Reconstruction of Asymmetric Soot Structure from Multi-angular Scanning (다각 주사법을 이용한 비대칭 매연분포의 재구성)

  • Lee, S.M.;Hwang, J.Y.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.55-61
    • /
    • 1999
  • A convolution algorithm combined with Fourier transformation is applied to the tomographic reconstruction of the asymmetric soot structure to identify the local soot volume fraction distribution. The line of sight integrated data from light extinction measurement with multi-angular scanning form basic information for the deconvolution. Multi-peak following interpolation technique is applied to obtain the effect of increasing number of scanning angles. Measurement of LII signal for the same flame shows the validity of this reconstruction technigue.

  • PDF

The Design of Reconstruction Filter for Order Tracking in Rotating Machinery (회전기기 진동의 차수 추종을 위한 재합성 필터의 설계)

  • 정승호;박영필
    • Journal of KSNVE
    • /
    • v.2 no.2
    • /
    • pp.117-123
    • /
    • 1992
  • In the study, the design method of reconstruction filter is studied for synchronized sampling which is necessary for order tracking in rotating machinery. The original data sampled at constant intervals, using fixed anti- aliasing filters, is reconstructed by digital reconstruction filter and is resampled at new sampling times calculated by a suitable shaft angle encoder pulse arrival times in order to synchronize with shaft velocity. In addition to eliminating the tracking synthesizer and filters, this new method has no phase noise due to phase-locked loops.

  • PDF

Weak-lensing Mass Reconstruction of Galaxy Clusters with Convolutional Neural Network

  • Hong, Sungwook E.;Park, Sangnam;Jee, M. James;Bak, Dongsu;Cha, Sangjun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.49.4-50
    • /
    • 2020
  • We introduce a novel method for reconstructing the projected matter distributions of galaxy clusters with weak-lensing (WL) data based on convolutional neural network (CNN). We control the noise level of the galaxy shear catalog such that it mimics the typical properties of the existing Subaru/Suprime-Cam WL observations of galaxy clusters. We find that our mass reconstruction based on multi-layered CNN with architectures of alternating convolution and trans-convolution filters significantly outperforms the traditional mass reconstruction methods.

  • PDF

Cell-Based Wavelet Compression Method for Volume Data (볼륨 데이터를 위한 셀 기반 웨이브릿 압축 기법)

  • Kim, Tae-Yeong;Sin, Yeong-Gil
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.11
    • /
    • pp.1285-1295
    • /
    • 1999
  • 본 논문은 방대한 크기의 볼륨 데이타를 효율적으로 렌더링하기 위한 셀 기반 웨이브릿 압축 방법을 제시한다. 이 방법은 볼륨을 작은 크기의 셀로 나누고, 셀 단위로 웨이브릿 변환을 한 다음 복원 순서에 따른 런-길이(run-length) 인코딩을 수행하여 높은 압축율과 빠른 복원을 제공한다. 또한 최근 복원 정보를 캐쉬 자료 구조에 효율적으로 저장하여 복원 시간을 단축시키고, 에러 임계치의 정규화로 비정규화된 웨이브릿 압축보다 빠른 속도로 정규화된 압축과 같은 고화질의 이미지를 생성하였다. 본 연구의 성능을 평가하기 위하여 {{}} 해상도의 볼륨 데이타를 압축하여 쉬어-? 분해(shear-warp factorization) 알고리즘에 적용한 결과, 손상이 거의 없는 상태로 약 27:1의 압축율이 얻어졌고, 약 3초의 렌더링 시간이 걸렸다.Abstract This paper presents an efficient cell-based wavelet compression method of large volume data. Volume data is divided into individual cell of {{}} voxels, and then wavelet transform is applied to each cell. The transformed cell is run-length encoded according to the reconstruction order resulting in a fairly good compression ratio and fast reconstruction. A cache structure is used to speed up the process of reconstruction and a threshold normalization scheme is presented to produce a higher quality rendered image. We have combined our compression method with shear-warp factorization, which is an accelerated volume rendering algorithm. Experimental results show the space requirement to be about 27:1 and the rendering time to be about 3 seconds for {{}} data sets while preserving the quality of an image as like as using original data.