• Title/Summary/Keyword: Data Query

Search Result 1,553, Processing Time 0.027 seconds

Multi-level Load Shedding Scheme to Increase Spatial Data Stream Query Accuracy (공간 데이터 스트림 질의 정확도 향상을 위한 다단계 부하제한 기법)

  • Jeong, Weonil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8370-8377
    • /
    • 2015
  • In spatial data stream management systems, it is needed appropriate load shedding algorithm because real-time input spatial data streams could exceed the limitation of main memory. However previous researches, lack regard for input ratio and spatial utilization rates of spatial data streams, or the characteristics of data source which generates data streams with spatial information efficiently, can lead to decrease the performance and accuracy of spatial data stream query. Therefore, multi-level load shedding scheme for spatial data stream management systems is proposed to increase the spatial query performance and accuracy. This proposed scheme limits overloads in relation to the input rate and the characteristics of data source first, and then, if needed, query data representing low query participation probability based on spatial utilizations are dropped relatively. Our experiments show that the proposed method could decrease load shedding frequency for previous researches by more than 11% despite query results accuracy and query performance are superior at 0.04% and 3%.

A Spatial Structural Query Language-G/SQL

  • Fang, Yu;Chu, Fang;Xinming, Tang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.860-879
    • /
    • 2002
  • Traditionally, Geographical Information Systems can only process spatial data in a procedure-oriented way, and the data can't be treated integrally. This method limits the development of spatial data applications. A new and promising method to solve this problem is the spatial structural query language, which extends SQL and provides integrated accessing to spatial data. In this paper, the theory of spatial structural query language is discussed, and a new geographical data model based on the concepts and data model in OGIS is introduced. According to this model, we implemented a spatial structural query language G/SQL. Through the studies of the 9-Intersection Model, G/SQL provides a set of topological relational predicates and spatial functions for GIS application development. We have successfully developed a Web-based GIS system-WebGIS-using G/SQL. Experiences show that the spatial operators G/SQL offered are complete and easy-to-use. The BNF representation of G/SQL syntax is included in this paper.

  • PDF

Spatio-temporal Sensor Data Processing Techniques

  • Kim, Jeong-Joon
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1259-1276
    • /
    • 2017
  • As technologies related to sensor network are currently emerging and the use of GeoSensor is increasing along with the development of Internet of Things (IoT) technology, spatial query processing systems to efficiently process spatial sensor data are being actively studied. However, existing spatial query processing systems do not support a spatial-temporal data type and a spatial-temporal operator for processing spatialtemporal sensor data. Therefore, they are inadequate for processing spatial-temporal sensor data like GeoSensor. Accordingly, this paper developed a spatial-temporal query processing system, for efficient spatial-temporal query processing of spatial-temporal sensor data in a sensor network. Lastly, this paper verified the utility of System through a scenario, and proved that this system's performance is better than existing systems through performance assessment of performance time and memory usage.

SPARQL Query Processing System over Scalable Triple Data using SparkSQL Framework (SparQLing : SparkSQL 기반 대용량 트리플 데이터를 위한 SPARQL 질의 시스템 구축)

  • Jeon, MyungJoong;Hong, JinYoung;Park, YoungTack
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.450-459
    • /
    • 2016
  • Every year, RDFS data tends further toward scalability; hence, the manner of SPARQL processing needs to be changed for fast query. The query processing method of SPARQL has been studied using a scalable distributed processing framework. Current studies indicate that the query engine based on the scalable distributed processing framework i.e., Hadoop(MapReduce) is not suitable for real-time processing because of the repetitive tasks; in addition, it is difficult to construct a query engine based on an In-memory Distributed Query engine, because distributed structure on the low-level is required to be considered. In this paper, we proposed a method to construct a query engine for improving the speed of the query process with the mass triple data. The query engine processes the query of SPARQL using the SparkSQL, which is an In-memory based, distributed query processing framework. SparkSQL is a high-level distributed query engine that facilitates existing SQL statement. In order to process the SPARQL query, after generating the Algebra Tree using Jena, the Algebra Tree is required to be translated to Spark Algebra Tree for application in the Spark system, and construction of the system that generated the SparkSQL query. Furthermore, we proposed the design of triple property table based on DataFrame for more efficient query processing in the Spark system. Finally, we verified the validity through comparative evaluation with the query engine, which is the existing distributed processing framework.

XQuery Query Rewriting for Query Optimization in Distributed Environments (분산 환경에 질의 최적화를 위한 XQuery 질의 재작성)

  • Park, Jong-Hyun;Kang, Ji-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.1-11
    • /
    • 2009
  • XQuery query proposed by W3C is one of the standard query languages for XML data and is widely accepted by many applications. Therefore the studies for efficient Processing of XQuery query have become a topic of critical importance recently and the optimization of XQuery query is one of new issues in these studies. However, previous researches just focus on the optimization techniques for a specific XML data management system and these optimization techniques can not be used under the any XML data management systems. Also, some previous researches use predefined XML data structure information such as XML schema or DTD for the optimization. In the real situation, however applications do not all refer to the structure information for XML data. Therefore, this paper analyzes only a XQuery query and optimize by using itself of the XQuery query. In this paper, we propose 3 kinds of optimization method that considers the characteristic of XQuery query. First method removes the redundant expressions described in XQuery query second method replaces the processing order of operation and clause in XQuery query and third method rewrites the XQuery query based on FOR clause. In case of third method, we consider FOR clause because generally FOR clause generates a loop in XQuery query and the loop often rises to execution frequency of redundant operation. Through a performance evaluation, we show that the processing time for rewritten queries is less than for original queries. also each method in our XQuery query optimizer can be used separately because the each method is independent.

Query Processing Systems in Sensor Networks (센서 네트워크에서 질의 처리 시스템)

  • Kim, Jeong-Joon;Chung, Sung-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.137-142
    • /
    • 2017
  • Recently, along with the development of IoT technology, technologies for wirelessly sensing various data, such as sensor nodes, RFID, CCTV, smart phones, etc., have rapidly developed, and in the field of multiple applications, to utilize sensor network related technology Have been actively pursued in various fields. Therefore, as GeoSensor utilization increases, query processing systems for efficiently processing 2D data such as spatial sensor data are actively researched. However, existing spatial query processing systems do not support a spatial-temporal data type and a spatial-temporal operator for processing spatial-temporal sensor data. Therefore, they are inadequate for processing spatial-temporal sensor data like GeoSensor. Accordingly, this paper developed a spatial-temporal query processing system, for efficient spatial-temporal query processing of spatial-temporal sensor data in a sensor network.

Design and Implementation of the Video Query Processing Engine for Content-Based Query Processing (내용기반 질의 처리를 위한 동영상 질의 처리기의 설계 및 구현)

  • Jo, Eun-Hui;Kim, Yong-Geol;Lee, Hun-Sun;Jeong, Yeong-Eun;Jin, Seong-Il
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.603-614
    • /
    • 1999
  • As multimedia application services on high-speed information network have been rapidly developed, the need for the video information management system that provides an efficient way for users to retrieve video data is growing. In this paper, we propose a video data model that integrates free annotations, image features, and spatial-temporal features for video purpose of improving content-based retrieval of video data. The proposed video data model can act as a generic video data model for multimedia applications, and support free annotations, image features, spatial-temporal features, and structure information of video data within the same framework. We also propose the video query language for efficiently providing query specification to access video clips in the video data. It can formalize various kinds of queries based on the video contents. Finally we design and implement the query processing engine for efficient video data retrieval on the proposed metadata model and the proposed video query language.

  • PDF

Efficient Query Retrieval from Social Data in Neo4j using LIndex

  • Mathew, Anita Brigit
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2211-2232
    • /
    • 2018
  • The unstructured and semi-structured big data in social network poses new challenges in query retrieval. This requirement needs to be met by introducing quality retrieval time measures like indexing. Due to the huge volume of data storage, there originate the need for efficient index algorithms to promote query processing. However, conventional algorithms fail to index the huge amount of frequently obtained information in real time and fall short of providing scalable indexing service. In this paper, a new LIndex algorithm, which is a heuristic on Lucene is built on Neo4jHA architecture that holds the social network Big data. LIndex is a flexible and simplified adaptive indexing scheme that ascendancy decomposed shortest paths around term neighbors as basic indexing unit. This newfangled index proves to be effectual in query space pruning of graph database Neo4j, scalable in index construction and deployment. A graph query is processed and optimized beyond the traditional Lucene in a time-based manner to a more efficient path method in LIndex. This advanced algorithm significantly reduces query fetch without compromising the quality of results in time. The experiments are conducted to confirm the efficiency of the proposed query retrieval in Neo4j graph NoSQL database.

Query Processing of Spatio-temporal Trajectory for Moving Objects (이동 객체를 위한 시공간 궤적의 질의 처리)

  • Byoungwoo Oh
    • Journal of Platform Technology
    • /
    • v.11 no.1
    • /
    • pp.52-59
    • /
    • 2023
  • The importance of spatio-temporal trajectories for contact tracing has increased due to the recent COVID-19 pandemic. Spatio-temporal trajectories store time and spatial data of moving objects. In this paper, I propose query processing for spatio-temporal trajectories of moving objects. The spatio-temporal trajectory model of moving objects has point type spatial data for storing locations and timestamp type temporal data for time. A trajectory query is a query to search for pairs of users who have been in close contact by boarding the same bus. To process the trajectory query, I use the Geolife dataset provided by Microsoft. The proposed trajectory query processing method divides trajectory data by date and checks whether users' trajectories were nearby for each date to generate information about contacts as the result.

  • PDF

kNN Query Processing Algorithm based on the Encrypted Index for Hiding Data Access Patterns (데이터 접근 패턴 은닉을 지원하는 암호화 인덱스 기반 kNN 질의처리 알고리즘)

  • Kim, Hyeong-Il;Kim, Hyeong-Jin;Shin, Youngsung;Chang, Jae-woo
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1437-1457
    • /
    • 2016
  • In outsourced databases, the cloud provides an authorized user with querying services on the outsourced database. However, sensitive data, such as financial or medical records, should be encrypted before being outsourced to the cloud. Meanwhile, k-Nearest Neighbor (kNN) query is the typical query type which is widely used in many fields and the result of the kNN query is closely related to the interest and preference of the user. Therefore, studies on secure kNN query processing algorithms that preserve both the data privacy and the query privacy have been proposed. However, existing algorithms either suffer from high computation cost or leak data access patterns because retrieved index nodes and query results are disclosed. To solve these problems, in this paper we propose a new kNN query processing algorithm on the encrypted database. Our algorithm preserves both data privacy and query privacy. It also hides data access patterns while supporting efficient query processing. To achieve this, we devise an encrypted index search scheme which can perform data filtering without revealing data access patterns. Through the performance analysis, we verify that our proposed algorithm shows better performance than the existing algorithms in terms of query processing times.