• Title/Summary/Keyword: Data Offloading

Search Result 62, Processing Time 0.024 seconds

Study on Program Partitioning and Data Protection in Computation Offloading (코드 오프로딩 환경에서 프로그램 분할과 데이터 보호에 대한 연구)

  • Lee, Eunyoung;Pak, Suehee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.11
    • /
    • pp.377-386
    • /
    • 2020
  • Mobile cloud computing involves mobile or embedded devices as clients, and features small devices with constrained resource and low availability. Due to the fast expansion of smart phones and smart peripheral devices, researches on mobile cloud computing attract academia's interest more than ever. Computation offloading, or code offloading, enhances the performance of computation by migrating a part of computation of a mobile system to nearby cloud servers with more computational resources through wired or wireless networks. Code offloading is considered as one of the best approaches overcoming the limited resources of mobile systems. In this paper, we analyze the factors and the performance of code offloading, especially focusing on static program partitioning and data protection. We survey state-of-the-art researches on analyzed topics. We also describe directions for future research.

Cellular Traffic Offloading through Opportunistic Communications Based on Human Mobility

  • Li, Zhigang;Shi, Yan;Chen, Shanzhi;Zhao, Jingwen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.872-885
    • /
    • 2015
  • The rapid increase of smart mobile devices and mobile applications has led to explosive growth of data traffic in cellular network. Offloading data traffic becomes one of the most urgent technical problems. Recent work has proposed to exploit opportunistic communications to offload cellular traffic for mobile data dissemination services, especially for accepting large delayed data. The basic idea is to deliver the data to only part of subscribers (called target-nodes) via the cellular network, and allow target-nodes to disseminate the data through opportunistic communications. Human mobility shows temporal and spatial characteristics and predictability, which can be used as effective guidance efficient opportunistic communication. Therefore, based on the regularity of human mobility we propose NodeRank algorithm which uses the encounter characteristics between nodes to choose target nodes. Different from the existing work which only using encounter frequency, NodeRank algorithm combined the contact time and inter-contact time meanwhile to ensure integrity and availability of message delivery. The simulation results based on real-world mobility traces show the performance advantages of NodeRank in offloading efficiency and network redundant copies.

A Function Level Static Offloading Scheme for Saving Energy of Mobile Devices in Mobile Cloud Computing (모바일 클라우드 컴퓨팅에서 모바일 기기의 에너지 절약을 위한 함수 수준 정적 오프로딩 기법)

  • Min, Hong;Jung, Jinman;Heo, Junyoung
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.707-712
    • /
    • 2015
  • Mobile cloud computing is a technology that uses cloud services to overcome resource constrains of a mobile device, and it applies the computation offloading scheme to transfer a portion of a task which should be executed from a mobile device to the cloud. If the communication cost of the computation offloading is less than the computation cost of a mobile device, the mobile device commits a certain task to the cloud. The previous cost analysis models, which were used for separating functions running on a mobile device and functions transferring to the cloud, only considered the amount of data transfer and response time as the offloading cost. In this paper, we proposed a new task partitioning scheme that considers the frequency of function calls and data synchronization, during the cost estimation of the computation offloading. We also verified the energy efficiency of the proposed scheme by using experimental results.

An Efficient On-line Software Service based on Application Customized Graphic Offloading Library (응용 맞춤형 그래픽 분할 실행 라이브러리에 기반한 효율적인 온라인 소프트웨어 서비스)

  • Choi, WonHyuk;Kim, Won-Young
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.49-57
    • /
    • 2015
  • In this Paper, we introduce an efficient on-line software service using an application customized graphic offloading library. The software service based on graphic offloading provides high-end software, like a 3D graphic design tool, as an on-line software service through using a client graphic rendering. When software is executed on server, its graphic works are handled by a client's GPU, while its data works are handled by a server's CPU. To improve the performance, we apply an asynchronous transmission channel scheme to our developed basic graphic offloading engine. Also, we add optimized common module and application specific module to our engine. To do that, we introduce how to implement the application specific module using analyzing patterns of graphic related APIs and messages that are generated by an executed software process. Also, we propose how to design the optimized common module using server side information caching. Finally, through the performance comparison experiment, we show that improved offloading engine has the better performance than old basic offloading engine.

Resource Allocation and Offloading Decisions of D2D Collaborative UAV-assisted MEC Systems

  • Jie Lu;Wenjiang Feng;Dan Pu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.211-232
    • /
    • 2024
  • In this paper, we consider the resource allocation and offloading decisions of device-to-device (D2D) cooperative UAV-assisted mobile edge computing (MEC) system, where the device with task request is served by unmanned aerial vehicle (UAV) equipped with MEC server and D2D device with idle resources. On the one hand, to ensure the fairness of time-delay sensitive devices, when UAV computing resources are relatively sufficient, an optimization model is established to minimize the maximum delay of device computing tasks. The original non-convex objective problem is decomposed into two subproblems, and the suboptimal solution of the optimization problem is obtained by alternate iteration of two subproblems. On the other hand, when the device only needs to complete the task within a tolerable delay, we consider the offloading priorities of task to minimize UAV computing resources. Then we build the model of joint offloading decision and power allocation optimization. Through theoretical analysis based on KKT conditions, we elicit the relationship between the amount of computing task data and the optimal resource allocation. The simulation results show that the D2D cooperation scheme proposed in this paper is effective in reducing the completion delay of computing tasks and saving UAV computing resources.

Response Time Analysis Considering Sensing Data Synchronization in Mobile Cloud Applications (모바일 클라우드 응용에서 센싱 데이터 동기화를 고려한 응답 시간 분석)

  • Min, Hong;Heo, Junyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.137-141
    • /
    • 2015
  • Mobile cloud computing uses cloud service to solve the resource constraint problem of mobile devices. Offloading means that a task executed on the mobile device commits to cloud and many studies related to the energy consumption have been researched. In this paper, we designed a response time model considering sensing data synchronization to estimate the efficiency of the offloading scheme in terms of the response time. The proposed model considers synchronization of required sensing data to improve the accuracy of response time estimation when cloud processes the task requested from a mobile device. We found that the response time is effected by new sensing data generation rate and synchronization period through simulation results.

An Implementation of Graphic Offloading Computing using GPU Virtualization based on API Remoting on a Server-based Software Service (서버 기반 SW 서비스에서 API 리모팅 기반의 GPU 가상화를 이용한 그래픽 분할 실행의 구현)

  • Choi, Won-Hyuk;Kim, Won-Young
    • Journal of Internet Computing and Services
    • /
    • v.12 no.6
    • /
    • pp.53-62
    • /
    • 2011
  • In this paper, we introduce a method of graphic offloading computing using a GPU virtualization technology in order to provide high demanding software like 3D software as an on-line software service. When the offloading software is executed on server's software virtualization environment, its graphic works are processed on a client's GPU using GPU virtualization, while on the other its data works are processed on server's CPU. To do that, we propose a method of rendering graphics information on client side GPU using API Remoting method. Also, we show the better performance than server based rendering method when we serve offloading software which include dynamical 3D graphics that display images are frequently changed through on-line. Moreover, we describe a method to virtualize offloading software by a process level and manage client's configuration information in order to decrease server's load when we provide software service to multiple clients.

User Mobility Model Based Computation Offloading Decision for Mobile Cloud

  • Lee, Kilho;Shin, Insik
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.3
    • /
    • pp.155-162
    • /
    • 2015
  • The last decade has seen a rapid growth in the use of mobile devices all over the world. With an increasing use of mobile devices, mobile applications are becoming more diverse and complex, demanding more computational resources. However, mobile devices are typically resource-limited (i.e., a slower-speed CPU, a smaller memory) due to a variety of reasons. Mobile users will be capable of running applications with heavy computation if they can offload some of their computations to other places, such as a desktop or server machines. However, mobile users are typically subject to dynamically changing network environments, particularly, due to user mobility. This makes it hard to choose good offloading decisions in mobile environments. In general, users' mobility can provide some hints for upcoming changes to network environments. Motivated by this, we propose a mobility model of each individual user taking advantage of the regularity of his/her mobility pattern, and develop an offloading decision-making technique based on the mobility model. We evaluate our technique through trace-based simulation with real log data traces from 14 Android users. Our evaluation results show that the proposed technique can help boost the performance of mobile devices in terms of response time and energy consumption, when users are highly mobile.

Socially Aware Device-to-multi-device User Grouping for Popular Content Distribution

  • Liu, Jianlong;Zhou, Wen'an;Lin, Lixia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4372-4394
    • /
    • 2020
  • The distribution of popular videos incurs a large amount of traffic at the base stations (BS) of networks. Device-to-multi-device (D2MD) communication has emerged an efficient radio access technology for offloading BS traffic in recent years. However, traditional studies have focused on synchronous user requests whereas asynchronous user requests are more common. Hence, offloading BS traffic in case of asynchronous user requests while considering their time-varying characteristics and the quality of experience (QoE) of video request users (VRUs) is a pressing problem. This paper uses social stability (SS) and video loading duration (VLD)-tolerant property to group VRUs and seed users (SUs) to offload BS traffic. We define the average amount of data transmission (AADT) to measure the network's capacity for offloading BS traffic. Based on this, we formulate a time-varying bipartite graph matching optimization problem. We decouple the problem into two subproblems which can be solved separately in terms of time and space. Then, we propose the socially aware D2MD user selection (SA-D2MD-S) algorithm based on finite horizon optimal stopping theory, and propose the SA-D2MD user matching (SA-D2MD-M) algorithm to solve the two subproblems. The results of simulations show that our algorithms outperform prevalent algorithms.

A Task Offloading Approach using Classification and Particle Swarm Optimization (분류와 Particle Swarm Optimization을 이용한 태스크 오프로딩 방법)

  • Mateo, John Cristopher A.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Innovations from current researches on cloud computing such as applying bio-inspired computing techniques have brought new level solutions in offloading mechanisms. With the growing trend of mobile devices, mobile cloud computing can also benefit from applying bio-inspired techniques. Energy-efficient offloading mechanisms on mobile cloud systems are needed to reduce the total energy consumption but previous works did not consider energy consumption in the decision-making of task distribution. This paper proposes the Particle Swarm Optimization (PSO) as an offloading strategy of cloudlet to data centers where each task is represented as a particle during the process. The collected tasks are classified using K-means clustering on the cloudlet before applying PSO in order to minimize the number of particles and to locate the best data center for a specific task, instead of considering all tasks during the PSO process. Simulation results show that the proposed PSO excels in choosing data centers with respect to energy consumption, while it has accumulated a little more processing time compared to the other approaches.