• 제목/요약/키워드: Data Mining Models

검색결과 414건 처리시간 0.028초

Students' Performance Prediction in Higher Education Using Multi-Agent Framework Based Distributed Data Mining Approach: A Review

  • M.Nazir;A.Noraziah;M.Rahmah
    • International Journal of Computer Science & Network Security
    • /
    • 제23권10호
    • /
    • pp.135-146
    • /
    • 2023
  • An effective educational program warrants the inclusion of an innovative construction which enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational Decision Support System (EDSS) has currently been a hot topic in educational systems, facilitating the pupil result monitoring and evaluation to be performed during their development. Insufficient information systems encounter trouble and hurdles in making the sufficient advantage from EDSS owing to the deficit of accuracy, incorrect analysis study of the characteristic, and inadequate database. DMTs (Data Mining Techniques) provide helpful tools in finding the models or forms of data and are extremely useful in the decision-making process. Several researchers have participated in the research involving distributed data mining with multi-agent technology. The rapid growth of network technology and IT use has led to the widespread use of distributed databases. This article explains the available data mining technology and the distributed data mining system framework. Distributed Data Mining approach is utilized for this work so that a classifier capable of predicting the success of students in the economic domain can be constructed. This research also discusses the Intelligent Knowledge Base Distributed Data Mining framework to assess the performance of the students through a mid-term exam and final-term exam employing Multi-agent system-based educational mining techniques. Using single and ensemble-based classifiers, this study intends to investigate the factors that influence student performance in higher education and construct a classification model that can predict academic achievement. We also discussed the importance of multi-agent systems and comparative machine learning approaches in EDSS development.

데이터 마이닝 기법을 통한 COVID-19 팬데믹의 국내 주가 영향 분석: 헬스케어산업을 중심으로 (Using Data Mining Techniques for Analysis of the Impacts of COVID-19 Pandemic on the Domestic Stock Prices: Focusing on Healthcare Industry)

  • 김덕현;유동희;정대율
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권3호
    • /
    • pp.21-45
    • /
    • 2021
  • Purpose This paper analyzed the impacts of domestic stock market by a global pandemic such as COVID-19. We investigated how the overall pattern of the stock market changed due to the impact of the COVID-19 pandemic. In particular, we analyzed in depth the pattern of stock price, as well, tried to find what factors affect on stock market index(KOSPI) in the healthcare industry due to the COVID-19 pandemic. Design/methodology/approach We built a data warehouse from the databases in various industrial and economic fields to analyze the changes in the KOSPI due to COVID-19, particularly, the changes in the healthcare industry centered on bio-medicine. We collected daily stock price data of the KOSPI centered on the KOSPI-200 about two years before and one year after the outbreak of COVID-19. In addition, we also collected various news related to COVID-19 from the stock market by applying text mining techniques. We designed four experimental data sets to develop decision tree-based prediction models. Findings All prediction models from the four data sets showed the significant predictive power with explainable decision tree models. In addition, we derived significant 10 to 14 decision rules for each prediction model. The experimental results showed that the decision rules were enough to explain the domestic healthcare stock market patterns for before and after COVID-19.

Data Mining Approach Using Practical Swarm Optimization (PSO) to Predicting Going Concern: Evidence from Iranian Companies

  • Salehi, Mahdi;Fard, Fezeh Zahedi
    • 유통과학연구
    • /
    • 제11권3호
    • /
    • pp.5-11
    • /
    • 2013
  • Purpose - Going concern is one of fundamental concepts in accounting and auditing and sometimes the assessment of a company's going concern status that is a tough process. Various going concern prediction models' based on statistical and data mining methods help auditors and stakeholders suggested in the previous literature. Research design - This paper employs a data mining approach to prediction of going concern status of Iranian firms listed in Tehran Stock Exchange using Particle Swarm Optimization. To reach this goal, at the first step, we used the stepwise discriminant analysis it is selected the final variables from among of 42 variables and in the second stage; we applied a grid-search technique using 10-fold cross-validation to find out the optimal model. Results - The empirical tests show that the particle swarm optimization (PSO) model reached 99.92% and 99.28% accuracy rates for training and holdout data. Conclusions - The authors conclude that PSO model is applicable for prediction going concern of Iranian listed companies.

  • PDF

MOTIF BASED PROTEIN FUNCTION ANALYSIS USING DATA MINING

  • Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.812-815
    • /
    • 2006
  • Proteins are essential agents for controlling, effecting and modulating cellular functions, and proteins with similar sequences have diverged from a common ancestral gene, and have similar structures and functions. Function prediction of unknown proteins remains one of the most challenging problems in bioinformatics. Recently, various computational approaches have been developed for identification of short sequences that are conserved within a family of closely related protein sequence. Protein function is often correlated with highly conserved motifs. Motif is the smallest unit of protein structure and function, and intends to make core part among protein structural and functional components. Therefore, prediction methods using data mining or machine learning have been developed. In this paper, we describe an approach for protein function prediction of motif-based models using data mining. Our work consists of three phrases. We make training and test data set and construct classifier using a training set. Also, through experiments, we evaluate our classifier with other classifiers in point of the accuracy of resulting classification.

  • PDF

데이터마이닝을 이용한 국민연금 부정수급 예측모형 개발 - 손해배상금 불성실 신고를 대상으로 - (An Application of Data-Mining Tool in Fraud Pension Payment Prediction)

  • 차경엽
    • Communications for Statistical Applications and Methods
    • /
    • 제17권1호
    • /
    • pp.1-8
    • /
    • 2010
  • 최근 사회복지분야에서 부정수급, 횡령 등이 빈번히 발생함에 따라 비리를 방지하기 위한 체계적인 관리 방안이 요구되고 있다. 데이터마이닝은 다수의 이해관계자와 많은 예산이 투입되는 사업을 관리하는데 효과적인 방법이다. 본 연구는 국민연금의 부정 수급자 관리방안으로 데이터마이닝을 이용한 예측모형을 개발하였다. 분석결과, 수급자의 급여, 연금 가입, 사고내역 정보가 부정수급의 특성 요인으로 나타났으며 이를 의사결정나무 모형, 로지스틱 회귀모형, 인공신경망 모형에 적용한 결과 의사결정나무 모형의 예측력이 가장 우수한 것으로 분석되었다.

오피니언 분류의 감성사전 활용효과에 대한 연구 (A Study on the Effect of Using Sentiment Lexicon in Opinion Classification)

  • 김승우;김남규
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.133-148
    • /
    • 2014
  • 최근 다양한 정보채널들의 등장으로 인해 빅데이터에 대한 관심이 높아지고 있다. 이와 같은 현상의 가장 큰 원인은, 스마트기기의 사용이 활성화 됨에 따라 사용자가 생성하는 텍스트, 사진, 동영상과 같은 비정형 데이터의 양이 크게 증가하고 있는 것에서 찾을 수 있다. 특히 비정형 데이터 중에서도 텍스트 데이터의 경우, 사용자들의 의견 및 다양한 정보를 명확하게 표현하고 있다는 특징이 있다. 따라서 이러한 텍스트에 대한 분석을 통해 새로운 가치를 창출하고자 하는 시도가 활발히 이루어지고 있다. 텍스트 분석을 위해 필요한 기술은 대표적으로 텍스트 마이닝과 오피니언 마이닝이 있다. 텍스트 마이닝과 오피니언 마이닝은 모두 텍스트 데이터를 입력 데이터로 사용할 뿐 아니라 파싱, 필터링 등 자연어 처리기술을 사용한다는 측면에서 많은 공통점을 갖고 있다. 특히 문서의 분류 및 예측에 있어서 목적 변수가 긍정 또는 부정의 감성을 나타내는 경우에는, 전통적 텍스트 마이닝, 또는 감성사전 기반의 오피니언 마이닝의 두 가지 방법론에 의해 오피니언 분류를 수행할 수 있다. 따라서 텍스트 마이닝과 오피니언 마이닝의 특징을 구분하는 가장 명확한 기준은 입력 데이터의 형태, 분석의 목적, 분석의 결과물이 아닌 감성사전의 사용 여부라고 할 수 있다. 따라서 본 연구에서는 오피니언 분류라는 동일한 목적에 대해 텍스트 마이닝과 오피니언 마이닝을 각각 사용하여 예측 모델을 수립하는 과정을 비교하고, 결과로 도출된 모델의 예측 정확도를 비교하였다. 오피니언 분류 실험을 위해 영화 리뷰 2,000건에 대한 실험을 수행하였으며, 실험 결과 오피니언 마이닝을 통해 수립된 모델이 텍스트 마이닝 모델에 비해 전체 구간의 예측 정확도 평균이 높게 나타나고, 예측의 확실성이 강한 문서일수록 예측 정확성이 높게 나타나는 일관적인 성향을 나타내는 등 더욱 바람직한 특성을 보였다.

다중모델을 이용한 자동차 보험 고객의 이탈예측 (Customer Churn Prediction of Automobile Insurance by Multiple Models)

  • 이재식;이진천
    • 지능정보연구
    • /
    • 제12권2호
    • /
    • pp.167-183
    • /
    • 2006
  • 데이터마이닝은 우리가 완벽하게 알고 있지 못하는 데이터 집합으로부터 알려지지 않은 사실이나 규칙을 찾아내는 작업이기 때문에 항상 높은 오류율의 위험에 처해 있다. 다중모델은 하나의 문제에 다수의 모델을 사용함으로써 오류율을 줄이고자 하는 접근 방법이다. 본 연구에서는 데이터마이닝의 예측 성능을 개선시킬 수 있는 새로운 방식의 다중모델을 제시한다. 이 다중모델은 입력사례의 특성에 따라 그에 적합하게 개발된 모델이 선정되어 적용되는 특징을 가지고 있다. 제시된 다중모델의 현실적인 성능 검증을 위해 국내 자동차 보험 가입 고객의 이탈 예측 문제에 적용하여, 그 결과를 단일모델의 결과와 비교 평가하였다. 비교 대상 단일모델로는, 사례기반추론, 인공신경망, 의사결정나무 등이 사용되었는데, 다중모델의 예측 성능이 어떤 단일모델의 예측 성능보다 우수한 것으로 나타났다.

  • PDF

주식 투자자의 의사결정 지원을 위한 데이터마이닝 도구 (Data Mining Tool for Stock Investors' Decision Support)

  • 김성동
    • 한국콘텐츠학회논문지
    • /
    • 제12권2호
    • /
    • pp.472-482
    • /
    • 2012
  • 주식시장에는 많은 투자자들이 참여하고 있으며 점점 더 많은 사람이 주식투자에 관심을 가지고 있다. 주식시장에서 위험을 회피하고 수익을 얻기 위해서는 다양한 정보를 바탕으로 정확한 의사결정을 해야한다. 즉 수익을 얻을 수 있는 종목 선택, 적절한 매수-매도 가격의 결정, 그리고 적절한 보유기간 등을 결정해야 한다. 본 논문에서는 개인 주식 투자자의 의사결정 지원을 위한 데이터마이닝 도구를 제안한다. 즉, 개인 투자자가 직접 기계학습 방법을 적용하여 주가예측 모델을 생성할 수 있게 하고, 적절한 매수-매도 가격과 보유기간 등을 결정하는 것을 도와주는 도구를 제안한다. 제안하는 도구는 과거 데이터를 이용하여 투자자 자신의 성향에 맞는 투자에서의 의사결정을 할 수 있도록 지원하는 도구로서 주가데이터 관리, 기계학습 적용을 통한 주가예측 모델 생성, 투자 시뮬레이션 등의 기능을 제공한다. 사용자는 스스로 주가에 영향을 미칠 수 있다고 판단하는 기술적 지표를 선정하고 이를 이용하여 주가예측 모델을 만들고 테스트 할 수 있으며, 적절한 예측모델을 적용하여 시뮬레이션을 수행해 봄으로써 실제로 어느 정도 수익을 얻을 수 있는지 평가하고 적절한 매매 정책을 수립할 수 있다. 제안하는 도구를 이용하여 주식 투자자는 기존의 감정적 판단에 의한 투자가 아닌 객관적 데이터에 의해 검증을 거친 주가예측 모델과 매매정책에 따라 주식투자를 할 수 있어 이전 보다 나은 수익을 기대할 수 있다.

Probabilistic Models for Local Patterns Analysis

  • Salim, Khiat;Hafida, Belbachir;Ahmed, Rahal Sid
    • Journal of Information Processing Systems
    • /
    • 제10권1호
    • /
    • pp.145-161
    • /
    • 2014
  • Recently, many large organizations have multiple data sources (MDS') distributed over different branches of an interstate company. Local patterns analysis has become an effective strategy for MDS mining in national and international organizations. It consists of mining different datasets in order to obtain frequent patterns, which are forwarded to a centralized place for global pattern analysis. Various synthesizing models [2,3,4,5,6,7,8,26] have been proposed to build global patterns from the forwarded patterns. It is desired that the synthesized rules from such forwarded patterns must closely match with the mono-mining results (i.e., the results that would be obtained if all of the databases are put together and mining has been done). When the pattern is present in the site, but fails to satisfy the minimum support threshold value, it is not allowed to take part in the pattern synthesizing process. Therefore, this process can lose some interesting patterns, which can help the decider to make the right decision. In such situations we propose the application of a probabilistic model in the synthesizing process. An adequate choice for a probabilistic model can improve the quality of patterns that have been discovered. In this paper, we perform a comprehensive study on various probabilistic models that can be applied in the synthesizing process and we choose and improve one of them that works to ameliorate the synthesizing results. Finally, some experiments are presented in public database in order to improve the efficiency of our proposed synthesizing method.

데이터마이닝기법상에서 적합된 예측모형의 평가 -4개분류예측모형의 오분류율 및 훈련시간 비교평가 중심으로 (Evaluations of predicted models fitted for data mining - comparisons of classification accuracy and training time for 4 algorithms)

  • 이상복
    • Journal of the Korean Data and Information Science Society
    • /
    • 제12권2호
    • /
    • pp.113-124
    • /
    • 2001
  • 의사결정나무모형 가운데 하나인 CHAID, 로지스틱 회귀모형, 이들을 이용한 각각의 베깅모형 등 4가지 예측분류모형에 대한 오분류율과 훈련시간을 표본크기별로 계산하고, 이들 모형에 대한 모의실험 비교를 통하여 주어진 알고리즘들의 효율성을 평가하였다. 베깅 의사결정나무모형은 오분류율은 낮았으나 상대적으로 훈련시간이 가장 길었다.

  • PDF