• Title/Summary/Keyword: Data Mining Models

Search Result 414, Processing Time 0.022 seconds

A Study of Data Mining Optimization Model for the Credit Evaluation

  • Kim, Kap-Sik;Lee, Chang-Soon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.825-836
    • /
    • 2003
  • Based on customer information and financing processes in capital market, we derived individual models by applying multi-layered perceptrons, MDA, and decision tree. Further, the results from the existing single models were compared with the results from the integrated model that was developed using genetic algorithm. This study contributes not only to verifying the existing individual models and but also to overcoming the limitations of the existing approaches. We have depended upon the approaches that compare individual models and search for the best-fit model. However, this study presents a methodology to build an integrated data mining model using genetic algorithm.

  • PDF

Study on the Comparison and Analysis of Data Mining Models for the Efficient Customer Credit Evaluation (효율적인 신용평가를 위한 데이터마이닝 모형의 비교.분석에 관한 연구)

  • 김갑식
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.1
    • /
    • pp.161-174
    • /
    • 2004
  • This study is intended to suggest1 the optimized data mining model for the efficient customer credit evaluation in the capital finance industry. To accomplish the research objective, various data mining models for the customer credit evaluation are compared and analyzed. Furthermore, existing models such as Multi-Layered Perceptrons, Multivariate Discrimination Analysis, Radial Basis Function, Decision Tree, and Logistic Regression are employed for analyzing the customer information in the capital finance market and the detailed data of capital financing transactions. Finally, the data from the integrated model utilizing a genetic algorithm is compared with those of each individual model mentioned above. The results reveals that the integrated model is superior to other existing models.

  • PDF

Analyzing Customer Management Data by Data Mining: Case Study on Chum Prediction Models for Insurance Company in Korea

  • Cho, Mee-Hye;Park, Eun-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1007-1018
    • /
    • 2008
  • The purpose of this case study is to demonstrate database-marketing management. First, we explore original variables for insurance customer's data, modify them if necessary, and go through variable selection process before analysis. Then, we develop churn prediction models using logistic regression, neural network and SVM analysis. We also compare these three data mining models in terms of misclassification rate.

  • PDF

Data Mining Approach to Predicting Serial Publication Periods and Mobile Gamification Likelihood for Webtoon Contents

  • Jang, Hyun Seok;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.4
    • /
    • pp.17-24
    • /
    • 2018
  • This paper proposes data mining models relevant to the serial publication periods and mobile gamification likelihood of webtoon contents which were either serialized or completed in platform. The size of the cartoon industry including webtoon takes merely 1% of the total entertainment contents industry in Korea. However, the significance of webtoon business is rapidly growing because its intellectual property can be easily used as an effective OSMU (One Source Multi-Use) vehicle for multiple types of contents such as movie, drama, game, and character-related merchandising. We suggested a set of data mining classifiers that are deemed suitable to provide prediction models for serial publication periods and mobile gamification likelihood for the sake of webtoon contents. As a result, the balanced accuracies are respectively recorded as 85.0% and 59.0%, from the two models.

An Empirical Comparison Study on Attack Detection Mechanisms Using Data Mining (데이터 마이닝을 이용한 공격 탐지 메커니즘의 실험적 비교 연구)

  • Kim, Mi-Hui;Oh, Ha-Young;Chae, Ki-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.208-218
    • /
    • 2006
  • In this paper, we introduce the creation methods of attack detection model using data mining technologies that can classify the latest attack types, and can detect the modification of existing attacks as well as the novel attacks. Also, we evaluate comparatively these attack detection models in the view of detection accuracy and detection time. As the important factors for creating detection models, there are data, attribute, and detection algorithm. Thus, we used NetFlow data gathered at the real network, and KDD Cup 1999 data for the experiment in large quantities. And for attribute selection, we used a heuristic method and a theoretical method using decision tree algorithm. We evaluate comparatively detection models using a single supervised/unsupervised data mining approach and a combined supervised data mining approach. As a result, although a combined supervised data mining approach required more modeling time, it had better detection rate. All models using data mining techniques could detect the attacks within 1 second, thus these approaches could prove the real-time detection. Also, our experimental results for anomaly detection showed that our approaches provided the detection possibility for novel attack, and especially SOM model provided the additional information about existing attack that is similar to novel attack.

A Comparative Study of Estimation by Analogy using Data Mining Techniques

  • Nagpal, Geeta;Uddin, Moin;Kaur, Arvinder
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.621-652
    • /
    • 2012
  • Software Estimations provide an inclusive set of directives for software project developers, project managers, and the management in order to produce more realistic estimates based on deficient, uncertain, and noisy data. A range of estimation models are being explored in the industry, as well as in academia, for research purposes but choosing the best model is quite intricate. Estimation by Analogy (EbA) is a form of case based reasoning, which uses fuzzy logic, grey system theory or machine-learning techniques, etc. for optimization. This research compares the estimation accuracy of some conventional data mining models with a hybrid model. Different data mining models are under consideration, including linear regression models like the ordinary least square and ridge regression, and nonlinear models like neural networks, support vector machines, and multivariate adaptive regression splines, etc. A precise and comprehensible predictive model based on the integration of GRA and regression has been introduced and compared. Empirical results have shown that regression when used with GRA gives outstanding results; indicating that the methodology has great potential and can be used as a candidate approach for software effort estimation.

Data-Mining Bootstrap Procedure with Potential Predictors in Forecasting Models: Evidence from Eight Countries in the Asia-Pacific Stock Markets

  • Lee, Hojin
    • East Asian Economic Review
    • /
    • v.23 no.4
    • /
    • pp.333-351
    • /
    • 2019
  • We use a data-mining bootstrap procedure to investigate the predictability test in the eight Asia-Pacific regional stock markets using in-sample and out-of-sample forecasting models. We address ourselves to the data-mining bias issues by using the data-mining bootstrap procedure proposed by Inoue and Kilian and applied to the US stock market data by Rapach and Wohar. The empirical findings show that stock returns are predictable not only in-sample but out-of-sample in Hong Kong, Malaysia, Singapore, and Korea with a few exceptions for some forecasting horizons. However, we find some significant disparity between in-sample and out-of-sample predictability in the Korean stock market. For Hong Kong, Malaysia, and Singapore, stock returns have predictable components both in-sample and out-of-sample. For the US, Australia, and Canada, we do not find any evidence of return predictability in-sample and out-of-sample with a few exceptions. For Japan, stock returns have a predictable component with price-earnings ratio as a forecasting variable for some out-of-sample forecasting horizons.

DSS Architectures to Support Data Mining Activities for Supply Chain Management (데이터 마이닝을 활용한 공급사슬관리 의사결정지원시스템의 구조에 관한 연구)

  • Jhee, Won-Chul;Suh, Min-Soo
    • Asia pacific journal of information systems
    • /
    • v.8 no.3
    • /
    • pp.51-73
    • /
    • 1998
  • This paper is to evaluate the application potentials of data mining in the areas of Supply Chain Management (SCM) and to suggest the architectures of Decision Support Systems (DSS) that support data mining activities. We first briefly introduce data mining and review the recent literatures on SCM and then evaluate data mining applications to SCM in three aspects: marketing, operations management and information systems. By analyzing the cases about pricing models in distribution channels, demand forecasting and quality control, it is shown that artificial intelligence techniques such as artificial neural networks, case-based reasoning and expert systems, combined with traditional analysis models, effectively mine the useful knowledge from the large volume of SCM data. Agent-based information system is addressed as an important architecture that enables the pursuit of global optimization of SCM through communication and information sharing among supply chain constituents without loss of their characteristics and independence. We expect that the suggested architectures of intelligent DSS provide the basis in developing information systems for SCM to improve the quality of organizational decisions.

  • PDF

Prediction of Customer Failure Rate Using Data Mining in the LCD Industry (LCD 디스플레이 산업에서 데이터마이닝 알고리즘을 이용한 고객 불량률 예측)

  • You, Hwa Youn;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.5
    • /
    • pp.327-336
    • /
    • 2016
  • Prediction of customer failure rates plays an important role for establishing appropriate management policies and improving the profitability for industries. For these reasons, many LCD (Liquid crystal display) manufacturing industries have attempted to construct prediction models for customer failure rates. However, most traditional models are based on the parametric approaches requiring the assumption that the data follow a certain probability distribution. To address the limitation posed by the distributional assumption underpinning traditional models, we propose using parameter-free data mining models for predicting customer failure rates. In addition, we use various information associated with product attributes and field return for more comprehensive analysis. The effectiveness and applicability of the proposed method were demonstrated with a real dataset from one of the leading LCD companies in South Korea.

Artificial Neural Networks for Interest Rate Forecasting based on Structural Change : A Comparative Analysis of Data Mining Classifiers

  • Oh, Kyong-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.641-651
    • /
    • 2003
  • This study suggests the hybrid models for interest rate forecasting using structural changes (or change points). The basic concept of this proposed model is to obtain significant intervals caused by change points, to identify them as the change-point groups, and to reflect them in interest rate forecasting. The model is composed of three phases. The first phase is to detect successive structural changes in the U. S. Treasury bill rate dataset. The second phase is to forecast the change-point groups with data mining classifiers. The final phase is to forecast interest rates with backpropagation neural networks (BPN). Based on this structure, we propose three hybrid models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported model, (2) case-based reasoning (CBR)-supported model, and (3) BPN-supported model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. For interest rate forecasting, this study then examines the prediction ability of hybrid models to reflect the structural change.

  • PDF