• Title/Summary/Keyword: Data Migration

Search Result 724, Processing Time 0.026 seconds

Cryptography in the Cloud: Advances and Challenges

  • Boyd, Colin
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.17-23
    • /
    • 2013
  • Cloud computing is a currently developing revolution in information technology that is disturbing the way that individuals and corporate entities operate while enabling new distributed services that have not existed before. At the foundation of cloud computing is the broader concept of converged infrastructure and shared services. Security is often said to be a major concern of users considering migration to cloud computing. This article examines some of these security concerns and surveys recent research efforts in cryptography to provide new technical mechanisms suitable for the new scenarios of cloud computing. We consider techniques such as homomorphic encryption, searchable encryption, proofs of storage, and proofs of location. These techniques allow cloud computing users to benefit from cloud server processing capabilities while keeping their data encrypted; and to check independently the integrity and location of their data. Overall we are interested in how users may be able to maintain and verify their own security without having to rely on the trust of the cloud provider.

PC-based Processing of Shallow Marine Multi-channel Seismic Data (PC기반의 천해저 다중채널 탄성파 자료의 전산처리)

  • 공영세;김국주
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.116-124
    • /
    • 1995
  • Marine, shallow seismic data have been acquired and processed by newly developed multi-channel(6 channel), PC-based digital recording and processing system. The digital processing system includes pre-processing, swell-compensation filter, frequency filter, gain correction, deconvolution, stacking, migration, and plotting. The quality of processed sections is greatly enhanced in terms of signal-to-noise ratio and vertical/horizontal resolution. The multi-channel, digital recording, acquisition and processing system proved to be and economical, efficient and easy-to-use marine shallow seismic tool.

  • PDF

An innovative method for determining the diffusion coefficient of product nuclide

  • Chen, Chih-Lung;Wang, Tsing-Hai
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1019-1030
    • /
    • 2017
  • Diffusion is a crucial mechanism that regulates the migration of radioactive nuclides. In this study, an innovative numerical method was developed to simultaneously calculate the diffusion coefficient of both parent and, afterward, series daughter nuclides in a sequentially reactive through-diffusion model. Two constructed scenarios, a serial reaction (RN_1 ${\rightarrow}$ RN_2 ${\rightarrow}$ RN_3) and a parallel reaction (RN_1 ${\rightarrow}$ RN_2A + RN_2B), were proposed and calculated for verification. First, the accuracy of the proposed three-member reaction equations was validated using several default numerical experiments. Second, by applying the validated numerical experimental concentration variation data, the as-determined diffusion coefficient of the product nuclide was observed to be identical to the default data. The results demonstrate the validity of the proposed method. The significance of the proposed numerical method will be particularly powerful in determining the diffusion coefficients of systems with extremely thin specimens, long periods of diffusion time, and parent nuclides with fast decay constants.

SLA-Aware Resource Management for Cloud based Multimedia Service

  • Hasan, Md. Sabbir;Islam, Md. Motaharul;Park, Jun Young;Huh, Eui-Nam
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.171-174
    • /
    • 2013
  • Virtualization technology opened a new era in the field of Data intensive, Grid and Cloud Computing. Today's Data centers are smarter than ever leveraging the Virtualization technology. In response to that, Dynamic consolidations of Virtual Machines (VMs) allow efficient resource management by live migration of VMs in the hosts. Moreover, each client typically has a service level agreement (SLA), leads to stipulation in dealing with energy-performance trade-off as aggressive consolidation may lead to performance degradation beyond the negotiation. In this paper we propose a Cloud Based CDN approach for allocation of VM that aims to maximize the client-level SLA. Our experiment result demonstrates significant enhancement of SLA at certain level.

Ontology BIM-based Knowledge Service Framework Architecture Development (온톨로지 BIM 기반 지식 서비스 프레임웍 아키텍처 개발)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.52-60
    • /
    • 2022
  • Recently, the demand for connection between various heterogeneous dataset and BIM as a construction data model hub is increasing. In the past, in order to connect model between BIM and heterogeneous dataset, related dataset was stored in the RDBMS, and the service was provided by programming a method to link with the BIM object. This approach causes problems such as the need to modify the database schema and business logic, and the migration of existing data when requirements change. This problem adversely affects the scalability, reusability, and maintainability of model information. This study proposes an ontology BIM-based knowledge service framework considering the connectivity and scalability between BIM and heterogeneous dataset. Through the proposed framework, ontology BIM mapping, semantic information query method for linking between knowledge-expressing dataset and BIM are presented. In addition, to identify the effectiveness of the proposed method, the prototype is developed. Also, the effectiveness and considerations of the ontology BIM-based knowledge service framework are derived.

Garbage Collection Technique for Reduction of Migration Overhead and Lifetime Prolongment of NAND Flash Memory (낸드 플래시 메모리의 이주 오버헤드 감소 및 수명연장을 위한 가비지 컬렉션 기법)

  • Hwang, Sang-Ho;Kwak, Jong Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.2
    • /
    • pp.125-134
    • /
    • 2016
  • NAND flash memory has unique characteristics like as 'out-place-update' and limited lifetime compared with traditional storage systems. According to out-of-place update scheme, a number of invalid (or called dead) pages can be generated. In this case, garbage collection is needed to reclaim invalid pages. Because garbage collection results in not only erase operations but also copy operations of valid (or called live) pages to other blocks, many garbage collection techniques have proposed to reduce the overhead and to increase the lifetime of NAND Flash systems. This techniques sometimes select victim blocks including cold data for the wear leveling. However, most of them overlook the cost of selecting victim blocks including cold data. In this paper, we propose a garbage collection technique named CAPi (Cost Age with Proportion of invalid pages). Considering the additional overhead of what to select victim blocks including cold data, CAPi improves the response time in garbage collection and increase the lifetime in memory systems. Additionally, the proposed scheme also improves the efficiency of garbage collection by separating cold data from hot data in valid pages. In experimental evaluation, we showed that CAPi yields up to, at maximum, 73% improvement in lifetime compared with existing garbage collections.

Prediction of Remaining Useful Life of Lithium-ion Battery based on Multi-kernel Support Vector Machine with Particle Swarm Optimization

  • Gao, Dong;Huang, Miaohua
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1288-1297
    • /
    • 2017
  • The estimation of the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is important for intelligent battery management system (BMS). Data mining technology is becoming increasingly mature, and the RUL estimation of Li-ion batteries based on data-driven prognostics is more accurate with the arrival of the era of big data. However, the support vector machine (SVM), which is applied to predict the RUL of Li-ion batteries, uses the traditional single-radial basis kernel function. This type of classifier has weak generalization ability, and it easily shows the problem of data migration, which results in inaccurate prediction of the RUL of Li-ion batteries. In this study, a novel multi-kernel SVM (MSVM) based on polynomial kernel and radial basis kernel function is proposed. Moreover, the particle swarm optimization algorithm is used to search the kernel parameters, penalty factor, and weight coefficient of the MSVM model. Finally, this paper utilizes the NASA battery dataset to form the observed data sequence for regression prediction. Results show that the improved algorithm not only has better prediction accuracy and stronger generalization ability but also decreases training time and computational complexity.

Energy and Service Level Agreement Aware Resource Allocation Heuristics for Cloud Data Centers

  • Sutha, K.;Nawaz, G.M.Kadhar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5357-5381
    • /
    • 2018
  • Cloud computing offers a wide range of on-demand resources over the internet. Utility-based resource allocation in cloud data centers significantly increases the number of cloud users. Heavy usage of cloud data center encounters many problems such as sacrificing system performance, increasing operational cost and high-energy consumption. Therefore, the result of the system damages the environment extremely due to heavy carbon (CO2) emission. However, dynamic allocation of energy-efficient resources in cloud data centers overcomes these problems. In this paper, we have proposed Energy and Service Level Agreement (SLA) Aware Resource Allocation Heuristic Algorithms. These algorithms are essential for reducing power consumption and SLA violation without diminishing the performance and Quality-of-Service (QoS) in cloud data centers. Our proposed model is organized as follows: a) SLA violation detection model is used to prevent Virtual Machines (VMs) from overloaded and underloaded host usage; b) for reducing power consumption of VMs, we have introduced Enhanced minPower and maxUtilization (EMPMU) VM migration policy; and c) efficient utilization of cloud resources and VM placement are achieved using SLA-aware Modified Best Fit Decreasing (MBFD) algorithm. We have validated our test results using CloudSim toolkit 3.0.3. Finally, experimental results have shown better resource utilization, reduced energy consumption and SLA violation in heterogeneous dynamic cloud environment.

Kinematic Approximation of Partial Derivative Seismogram with respect to Velocity and Density (편미분 파동장을 이용한 탄성파 주시 곡선의 평가)

  • Shin, Chang-Soo;Shin, Sung-Ryul
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.8-18
    • /
    • 1998
  • In exploration seismology, the Kirchhoff hyperbola has been successfully used to migrate reflection seismo-grams. The mathematical basis of Kirchhoff hyperbola has not been clearly defined and understood for the application of prestack or poststack migration. The travel time from the scatterer in the subsurface to the receivers (exploding reflector model) on the surface can be a kinematic approximation of Green's function when the source is excited at position of the scatterer. If we add the travel time from the source to the scatterer in the subsurface to the travel time of exploding reflector model, we can view this travel time as a kinematic approximation of the partial derivative wavefield with respect to the velocity or the density in the subsurface. The summation of reflection seismogram along the Kirchhoff hyperbola can be evaluated as an inner product between the partial derivative wavefield and the field reflection seismogram. In addition to this kinematic interpretation of Kirchhoff hyperbola, when we extend this concept to shallow refraction seismic data, the stacking of refraction data along the straight line can be interpreted as a measurement of an inner product between the first arrival waveform of the partial derivative wavefield and the field refraction data. We evaluated the Kirchhoff hyperbola and the straight line for stacking the refraction data in terms of the first arrival waveform of the partial derivative wavefield with respect to the velocity or the density in the subsurface. This evaluation provides a firm and solid basis for the conventional Kirchhoff migration and the straight line stacking of the refraction data.

  • PDF

SEASONAL AND INTER-ANNUAL VARIATION OF SEA SURFACE CURRENT IN THE GULF OF THAILAND

  • Sojisuporn, Pramot;Morimoto, Akihiko;Yanagi, Tetsuo
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.352-355
    • /
    • 2006
  • In this study, the seasonal and inter-annual variation of sea surface current in the Gulf of Thailand were revealed through the use of WOD temperature and salinity data and monthly sea surface dynamic heights (SSDH) from TOPEX/Poseidon and ERS-2 altimetry data during 1995-2001. The mean dynamic height and mean geostrohic current were derived from the climatological data while SSDH data gave monthly dynamic heights and their geopstrophic currents. The mean geostrophic current showed strong southward and westward flow of South China Sea water along the gulf entrance. Counterclockwise eddy in the inner gulf and the western side of the gulf entrance associated with upwelling in the area. Seasonal geostrophic currents show basin-wide counterclockwise circulation during the southwest monsoon season and clockwise circulation during the northeast monsoon season. Upwelling was enhanced during the southwest monsoon season. The circulation patterns varied seasonally and inter-annually probably due to the variation in wind regime. And finally we found that congregation, spawning, and migration routes of short-bodied mackerel conform well with coastal upwelling and surface circulation in the gulf.

  • PDF