• 제목/요약/키워드: Data Matrix

검색결과 2,924건 처리시간 0.031초

움직이는 데이터 그림 (Moving Data Pictures)

  • 허명회
    • 응용통계연구
    • /
    • 제26권6호
    • /
    • pp.999-1007
    • /
    • 2013
  • 이 연구는 다음 몇 가지 경우에 적용 가능한 '움직이는 데이터 그림(moving data pictures)'을 제안 한다: 1) 한국어 텍스트의 단어 구름(word cloud), 2) n ${\times}$ p 행렬의 시각화(matrix visualization), 3) p ${\times}$ p 산점도 행렬의 동영상 버전, 4) k개 개체 군집의 동적 시각화 등. 이들 기법은 데이터에 내재된 숨은 정보와 시각적 아름다움을 드러내고 정보 소비자들의 흥미를 점화할 수 있다.

모델기반의 계측데이터 확장 및 손상 추정에 관한 연구 (A Model-based Study on the Expansion of Measured Data and the Damage Detection)

  • 강택선;이병헌;은희창
    • 대한건축학회논문집:구조계
    • /
    • 제34권3호
    • /
    • pp.3-10
    • /
    • 2018
  • It's not practical to collect all information at the entire degrees of freedom of finite element model. The incomplete measurements should be expanded for subsequent analysis and damage detection. This work presents the analytical methods to expand the incomplete static or dynamic response data. Using the expanded data, introducing the concept of residual force, and minimizing the performance index expressed as the stiffness matrix and its difference before and after damage, the variation in stiffness matrix is derived. Based on the difference in the stiffness matrix, the damage detection method of structures is also provided. The validity of the proposed methods is illustrated in a numerical application, the numerical results are analyzed for applications, and the applicability of both methods is investigated.

얇은 막대 배치작업을 위한 최적의 가중치 행렬을 사용한 실시간 로봇 비젼 제어기법 (Real-time Robotic Vision Control Scheme Using Optimal Weighting Matrix for Slender Bar Placement Task)

  • 장민우;김재명;장완식
    • 한국생산제조학회지
    • /
    • 제26권1호
    • /
    • pp.50-58
    • /
    • 2017
  • This paper proposes a real-time robotic vision control scheme using the weighting matrix to efficiently process the vision data obtained during robotic movement to a target. This scheme is based on the vision system model that can actively control the camera parameter and robotic position change over previous studies. The vision control algorithm involves parameter estimation, joint angle estimation, and weighting matrix models. To demonstrate the effectiveness of the proposed control scheme, this study is divided into two parts: not applying the weighting matrix and applying the weighting matrix to the vision data obtained while the camera is moving towards the target. Finally, the position accuracy of the two cases is compared by performing the slender bar placement task experimentally.

Development and Application of Protein-Protein interaction Prediction System, PreDIN (Prediction-oriented Database of Interaction Network)

  • 서정근
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2002년도 제1차워크샵
    • /
    • pp.5-23
    • /
    • 2002
  • Motivation: Protein-protein interaction plays a critical role in the biological processes. The identification of interacting proteins by bioinformatical methods can provide new lead In the functional studies of uncharacterized proteins without performing extensive experiments. Results: Protein-protein interactions are predicted by a computational algorithm based on the weighted scoring system for domain interactions between interacting protein pairs. Here we propose potential interaction domain (PID) pairs can be extracted from a data set of experimentally identified interacting protein pairs. where one protein contains a domain and its interacting protein contains the other. Every combinations of PID are summarized in a matrix table termed the PID matrix, and this matrix has proposed to be used for prediction of interactions. The database of interacting proteins (DIP) has used as a source of interacting protein pairs and InterPro, an integrated database of protein families, domains and functional sites, has used for defining domains in interacting pairs. A statistical scoring system. named "PID matrix score" has designed and applied as a measure of interaction probability between domains. Cross-validation has been performed with subsets of DIP data to evaluate the prediction accuracy of PID matrix. The prediction system gives about 50% of sensitivity and 98% of specificity, Based on the PID matrix, we develop a system providing several interaction information-finding services in the Internet. The system, named PreDIN (Prediction-oriented Database of Interaction Network) provides interacting domain finding services and interacting protein finding services. It is demonstrated that mapping of the genome-wide interaction network can be achieved by using the PreDIN system. This system can be also used as a new tool for functional prediction of unknown proteins.

  • PDF

Grid method에 의한 3차원 형상의 평면전개를 위한 optimal matrix 표준화 연구 -$18{\sim}24$세 여성 Upper Front Shell을 중심으로- (Optimal Matrix Standardization for Pattern Flattening Using Grid Method -Focused on Young Women's Upper Front Shell-)

  • 최영림;남윤자;최경미
    • 한국의류학회지
    • /
    • 제30권8호
    • /
    • pp.1242-1252
    • /
    • 2006
  • Many applications in computer graphics require complex, highly detailed models. However, to control processing time, it is often desirable to use approximations in place of excessively detailed models. Therefore, we have developed the notion of an optimal matrix to simplify the model surface which can then rapidly obtain high quality 2D patterns by flattening the 3D surface. Firstly, the woman's 3D body was modeled based on Size Korea data. Secondly, the 3D model was divided by shell and block for the pattern draft. Thirdly, each block was flattened by the grid and bridge method. Finally, we select the optimal matrix and demonstrate it's efficiency and quality. The proposed approach accommodates surfaces with darts, which are commonly utilized in the clothing industry to reduce the deformation of surface forming and flattening. The resulting optimal matrix could be an initiation of standardization for pattern flattening. This can facilitate much better approximations, in both efficiency and exactness.

수면파형의 독립성분분석 (Independent Component Analysis(ICA) of Sleep Waves)

  • 이일근
    • 수면정신생리
    • /
    • 제8권1호
    • /
    • pp.67-71
    • /
    • 2001
  • Independent Component Analysis (ICA) is a blind source separation method using unsupervised learning and mutual information theory created in the late eighties and developed in the nineties. It has already succeeded in separating eye movement artifacts from human scalp EEG recording. Several characteristic sleep waves such as sleep spindle, K-complex, and positive occipital sharp transient of sleep (POSTS) can be recorded during sleep EEG recording. They are used as stage determining factors of sleep staging and might be reflections of unknown neural sources during sleep. We applied the ICA method to sleep EEG for sleep waves separation. Eighteen channel scalp longitudinal bipolar montage was used for the EEG recording. With the sampling rate of 256Hz, digital EEG data were converted into 18 by n matrix which was used as a original data matrix X. Independent source matrix U (18 by n) was obtained by independent component analysis method ($U=W{\timex}X$, where W is an 18 by 18 matrix obtained by ICA procedures). ICA was applied to the original EEG containing sleep spindle, K-complex, and POSTS. Among the 18 independent components, those containing characteristic shape of sleep waves could be identified. Each independent component was reconstructed into original montage by the product of inverse matrix of W (inv(W)) and U. The reconstructed EEG might be a separation of sleep waves without other components of original EEG matrix X. This result (might) demonstrates that characteristic sleep waves may be separated from original EEG of unknown mixed neural origins by the Independent Component Analysis (ICA) method.

  • PDF

일반 선형 모형에 대한 공분산 행렬의 비교 (Comparison of the covariance matrix for general linear model)

  • 남상아;이근백
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.103-117
    • /
    • 2017
  • 경시적 자료분석에서 공변량 효과를 추정할 때 반복 측정된 결과들의 상관성은 고려되어야 한다. 따라서 공분산 행렬을 모형화하는 것은 매우 중요하다. 그러나 공분산 행렬의 추정은 모수들의 수가 많고 추정된 공분산행렬이 양정치성을 만족해야 하므로 쉽지 않은 문제이다. 이러한 제한을 극복하기 위해, 공분산행렬의 모형화를 위한 여러가지 방법을 제안하였다: 자기회귀/이동평균/자기회귀-이동평균 구조를 각각 적용한 수정 콜레스키분해 (Pourahmadi, 1999), 이동평균 콜레스키분해 (Zhang과 Leng, 2012)와 자기회귀-이동평균 콜레스키 분해 (Lee 등, 2017) 이들 구조를 가지는 공분산 행렬의 특징을 비교연구하고자 한다. 이 세 가지 모형의 성능을 비교하기 위한 모의실험을 실시한다.

$CsX^+$ SNMS의 Matrix Effect 감소연구 (Research of Matrix Effect Reduction of $CsX^+$ SNMS)

  • 문환구;김동원;한철현;김영남;심태언
    • 한국진공학회지
    • /
    • 제1권1호
    • /
    • pp.115-120
    • /
    • 1992
  • SIMS는 뛰어난 원소검출감도와 깊이 분해능을 가지고 있어서 깊이에 따른 미량불 순물 분석에 필수적인 장비이지만, 시료와 불순물의 변화에 따라 이온화율과 깍이는 속도가 달라서 일어나는 matrix effect 때문에 표준 시료없이 정량분석을 할 수 없는 문제점이 있 다. 이런 SIMS의 단점을 보완하기 위한 방법으로 개발된 여러 가지 SNMS 기술 중 SIMS에 아무런 기계장치를 덧붙이지 않고도 정량화 개선효과를 가져오는 CsX+ SNMS에 대한 연구 를 진행하여, 지금까지 밝혀진 실리콘 산화막 등에서의 주성분원소 조성비분석을 통해 SNMS 기능을 확인하고 SIMS의 주 분석대상인 분순물 농도분석에의 적용가능성을 실험해 보았다. 이를 위해 실리콘에 BF2 이온 주입 후 붕소분포 분석시 강한 matrix effect를 나타 내는 불소의 효과를 SNMS와 SIMS로 비교하였으며, 검출한계와 dynamic range도 조사하였 다. 실험결과 CsX+ SNMS 기술은 matrix effect 때문에 실제분포와 다른 값으로 검출되는 불순물 시료분석에 적용할 수 있음을 알았다.

  • PDF

관측행렬의 손실 데이터 보정과 잡음 레벨 추정 방법 (Missing Data Correction and Noise Level Estimation of Observation Matrix)

  • 고성식
    • 전자공학회논문지
    • /
    • 제53권3호
    • /
    • pp.99-106
    • /
    • 2016
  • 본 논문에서는 잡음이 내포된 관측행렬에서 손실 데이터를 보정하는 방법과 그 잠재적 잡음에 대한 불확실성 분석에 대해서 다룰 것이다. 관측행렬에 잡음과 손실 데이터가 없을 경우는 SVD 행렬인수분해 방법에 의해 정확한 복원 결과를 얻을 수 있다. 그렇지만 일반적으로 관측행렬의 일부 요소는 손실되거나 잡음 영향을 받게 된다. 이러한 경우는 3차원 복원 오차를 유발시킬 뿐만 아니라 그 해결책 또한 찾기가 쉽지 않은 문제가 있다. 따라서 3차원 복원 오차를 최소화하기 위해서는 무엇보다도 잡음 환경에서 손실 데이터를 신뢰성 있게 보정하고, 그 보정된 결과를 정량적으로 평가를 해줄 필요가 있다. 본 논문은 2차원 투영 객체와 3차원 복원 형상 사이의 기하학적 특성을 이용해 손실 데이터를 보정 하는 방법을 소개하고, 그 보정 성능을 정량적으로 평가할 수 있는 SVD rank이론을 이용한 관측행렬의 잡음 레벨 추정 방법에 대해서 제안할 것이다.

다수 발전기 계통의 A행렬 직접계산법 (Direct Calculation of A Matrix in Multimachine Electric Power Systems)

  • 권세혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.221-225
    • /
    • 1989
  • Direct calculation algorithm for the elements of A matrix in multimachine power systems with constant impedance loads has been suggested. Generator's rotor parameters need not be determined from the manufacturer's data. We can identify the elements of A matrix into two categories: One is related to only generator parameters, and the other is related to generator parameters, initial values, and $Z_{Bus}$ matrix.

  • PDF