• 제목/요약/키워드: Data Interpolation

검색결과 1,020건 처리시간 0.022초

A Study on the Evaluation of Interpolation Methods in PIV (PIV에서의 보간기법의 평가에 관한 연구)

  • 최장운;조대한;최민선;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.90-100
    • /
    • 1996
  • To maintain high spacial accuracy and rapid CPU time in interpolating data from grid to random position or inversely in PIV, proposed many technuques are compared and discussed mainly in terms of interpolating error and computing time. And artificial PIV atmosphere data is furnished by CFD result. First, for interpolation from grid to random position, multiquadric method gives the highest accuracy with the longest CPU time and Taylor series expansion methods give reasonable accuracy with less calculating load. Secondly, the sub-pixel resolution analysis in estimating the coordinates of the maximum correlation coefficients essential in the grey level correlation PIV reveal that 8-neighbours 2nd-order least square interpolation gives utmost accuracy in terms of the real flow conditions.

  • PDF

A Study on the Evaluation of Interpolation Methods in PIV (PIV에서의 보간기법의 평가에 관한 연구)

  • Choi, J.W;Cho, D.H;Choi, M.S;Lee, Y.H
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.412-412
    • /
    • 1996
  • To maintain high spacial accuracy and rapid CPU time in interpolating data from grid to random position or inversely in PIV, proposed many technuques are compared and discussed mainly in terms of interpolating error and computing time. And artificial PIV atmosphere data is furnished by CFD result. First, for interpolation from grid to random position, multiquadric method gives the highest accuracy with the longest CPU time and Taylor series expansion methods give reasonable accuracy with less calculating load. Secondly, the sub-pixel resolution analysis in estimating the coordinates of the maximum correlation coefficients essential in the grey level correlation PIV reveal that 8-neighbours 2nd-order least square interpolation gives utmost accuracy in terms of the real flow conditions.

Estimation of Daily Solar Radiation at the Missing Point for Water Quality Impact Assessment in Nakdong River Watershed: Comparison of Modified Angstrom Model and Transmittance interpolation Model (수질 영향평가 신뢰수준 향상을 위한 낙동강 유역 미관측 지점에서의 일사량 추정: 수정형 Angstrom모형과 투과율모형의 비교)

  • Lee, Khil-Ha
    • Journal of Environmental Impact Assessment
    • /
    • 제21권1호
    • /
    • pp.219-227
    • /
    • 2012
  • Daily solar radiation is essential for water resources planning and environmental impact assessment. However, radiation data is not commonly available in Korea other than in big cities, and there has been no direct measurement for rural areas where water resources planning and environmental impact assessment is usually most needed. In general, missing radiation data is estimated from nearby regional stations within a certain distance, and this study compared two dominant methods (modified Angstrom equation and transmittance interpolation method) at six stations in Nakdong River watershed area. Two methods shows a similar level of accuracy but the transmittance interpolation method is likely to be superior in that there is no need for any measurement element since the modified Angstrom equation require the sunshine hour measurement. This study will contribute to improve water resource and water quality management in Nakdong River watershed.

Research Trend analysis for Seismic Data Interpolation Methods using Machine Learning (머신러닝을 사용한 탄성파 자료 보간법 기술 연구 동향 분석)

  • Bae, Wooram;Kwon, Yeji;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • 제23권3호
    • /
    • pp.192-207
    • /
    • 2020
  • We acquire seismic data with regularly or irregularly missing traces, due to economic, environmental, and mechanical problems. Since these missing data adversely affect the results of seismic data processing and analysis, we need to reconstruct the missing data before subsequent processing. However, there are economic and temporal burdens to conducting further exploration and reconstructing missing parts. Many researchers have been studying interpolation methods to accurately reconstruct missing data. Recently, various machine learning technologies such as support vector regression, autoencoder, U-Net, ResNet, and generative adversarial network (GAN) have been applied in seismic data interpolation. In this study, by reviewing these studies, we found that not only neural network models, but also support vector regression models that have relatively simple structures can interpolate missing parts of seismic data effectively. We expect that future research can improve the interpolation performance of these machine learning models by using open-source field data, data augmentation, transfer learning, and regularization based on conventional interpolation technologies.

ECG data compression using wavelet transform and adaptive fractal interpolation (웨이브렛 변환과 적응 프랙탈 보간을 이용한 심전도 데이터 압축)

  • 윤영노;이우희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • 제33B권12호
    • /
    • pp.45-61
    • /
    • 1996
  • This paper presents the ECG data compression using wavelet transform (WT) and adaptive fractal interpolation (AFI). The WT has the subband coding scheme. The fractal compression method represents any range of ECG signal by fractal interpolation parameters. Specially, the AFI used the adaptive range sizes and got good performance for ECG data cmpression. In this algorithm, the AFI is applied into the low frequency part of WT. The MIT/BIH arhythmia data was used for evaluation. The compression rate using WT and AFI algorithm is better than the compression rate using AFI. The WT and AFI algorithm yields compression ratio as high as 21.0 wihtout any entropy coding.

  • PDF

Sparse Point Representation Based on Interpolation Wavelets (보간 웨이블렛 기반의 Sparse Point Representation)

  • Park, Jun-Pyo;Lee, Do-Hyung;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제30권1호
    • /
    • pp.8-15
    • /
    • 2006
  • A Sparse Point Representation(SPR) based on interpolation wavelets is presented. The SPR is implemented for the purpose of CFD data compression. Unlike conventional wavelet transformation, the SPR relieves computing workload in the similar fashion of lifting scheme that includes splitting and prediction procedures in sequence. However, SPR skips update procedure that is major part of lifting scheme. Data compression can be achieved by proper thresholding method. The advantage of the SPR method is that, by keeping even point physical values, low frequency filtering procedure is omitted and its related unphysical thresholing mechanism can be avoided in reconstruction process. Extra singular feature detection algorithm is implemented for preserving singular features such as shock and vortices. Several numerical tests show the adequacy of SPR for the CFD data. It is also shown that it can be easily extended to nonlinear adaptive wavelets for enhanced feature capturing.

ECG Data Compression Using Wavelet Transform and Adaptive Fractal Interpolation (웨이브렛 변환과 적응 프랙탈 보간을 이용한 심전도 데이터 압축)

  • Lee, W.H.;Yoon, Y.R.;Park, S.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.221-224
    • /
    • 1996
  • This paper presents the ECG data compression using wavelet transform(WT) and adaptive fractal interpolation(AFI). The WT has the subband coding scheme. The fractal compression method represents any range of ECG signal by fractal interpolation parameters. Specially, the AFI used the adaptive range sizes and got good performance for ECG data compression. In this algorithm, the AFI is applied into the low frequency part of WT. The MIT/BIH arrhythmia data was used for evaluation. The compression rate using WT and AFI algorithm is better than the compression rate using AFI. The WT and AFI algorithm yields compression ratio as high as 21.0 without any entroy coding.

  • PDF

ECG Data Compression Using Adaptive Fractal Interpolation (적응 프랙탈 보간을 이용한 심전도 데이터 압축)

  • 전영일;윤영로
    • Journal of Biomedical Engineering Research
    • /
    • 제17권1호
    • /
    • pp.121-128
    • /
    • 1996
  • This paper presents the ECG data compression method referred the adaptive fractal interpolation algorithm. In the previous piecewise fractal interpolation(PFI) algorithm, the size of range is fixed So, the reconstruction error of the PFI algorithm is nonuniformly distributed in the part of the original ECG signal. In order to improve this problem, the adaptive fractal interpolation(AEI) algorithm uses the variable range. If the predetermined tolerance was not satisfied, the range would be subdivided into two equal size blocks. large ranges are used for encoding the smooth waveform to yield high compression efficiency, and the smaller ranges are U for encoding rapidly varying parts of the signal to preserve the signal quality. The suggested algorithm was evaluated using MIT/BIH arrhythmia database. The AEI algorithm was found to yield a relatively low reconstruction error for a given compression ratio than the PFI algorithm. In applications where a PRD of about 7.13% was acceptable, the ASI algorithm yielded compression ratio as high as 10.51, without any entropy coding of the parameters of the fractal code.

  • PDF

An Analysis of Accuracy for Submarine Topographic Information by Interpolation Method (보간기법에 따른 해저지형의 정확도 분석)

  • Kim Ga-Ya;Moon Doo-Youl;Seo Dong-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.67-76
    • /
    • 2006
  • Three-dimensional information of submarine topography was acquired by assembling DGPS and Echo Sounder, which is mainly used in the marine survey. However, the features of submarine topography, derived according to mechanical data, were confirmed using human eyes. Because the dredging capacity using a submarine surveying data influences harbor public affairs, analysis and the process method of surveying data is a very special element in construction costs. In this study, information on submarine topography is acquired by assembling DGPS and Echo Sounder. Moreover, the dredging capacity in harbor public affairs has been analyzed by the interpolation method: inverse distance to a power, kriging, minimum curvature, nearest neighbor, and radial basis function. Also, utilization of DGPS and Echo Sounder method in calculation of the dredging capacity have been confirmed by comparing and analyzing the dredging capacity and the actual one, as per each interpolation. According to this comparison result, in the case of applying Radial basis function interpolation and Kriging, 3.94 % and 4.61 % of error rates have been shown, respectively. In the case of the study for application of the proper interpolation, as per characteristics of submarine topography, is preceded in calculation of the dredging capacity relevant to harbor public affairs, it is expected that more speedy and correct calculation for the dredging capacity can be made.

Hybrid Algorithm for Interpolation Based on Macro-block Gray Value Gradient under H.264 (H.264하에서 마크로 블록 그레이 값의 미분을 사용한 인터폴레이션)

  • Wang, Shi;Chen, Hongxin;Yoo, Hyeon-Joong;Kim, Hyong-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제10권2호
    • /
    • pp.274-279
    • /
    • 2009
  • H.264 suggests applying a 2-D 6-tap wiener filter to realize the interpolation for half-pixel positions, followed by a bilinear interpolation to get the data of quarter-pixels precision. This method is comparatively simpler; however, it only considers the affection of 4-connection neighborhood ignoring the influence that comes from the changing rate between respective neighborhoods. As a result, it has the characteristics of a Low-pass filter under the risk of losing high-frequency weights. The Cubic interpolation uses the gray-values within the larger regions of points to be sampled for interpolation. Nevertheless, the cubic interpolation is more complicated and computational. We give a deep analysis on the features while applying both bilinear and cubic interpolation in H.264 presenting a proper selection of interpolation algorithm with respect to specific distribution of gray-value in a certain grand block. The experiments point out that load far motion searching and interpolation are reduced when promoting the precision of interpolation simultaneously.