Communications for Statistical Applications and Methods
/
v.12
no.3
/
pp.659-672
/
2005
This paper evaluates discretization of continuous variables to select relevant variables for supervised learning using mutual information. Three discretization methods, MDL, Histogram and 4-Intervals are considered. The process of discretization and variable subset selection is evaluated according to the classification accuracies with the 6 real data sets of UCI databases. Results show that 4-Interval discretization method based on quantiles, is robust and efficient for variable selection process. We also visually evaluate the appropriateness of the selected subset of variables.
Discretization of continuous variables intended to improve the performance of various algorithms such as data mining by transforming quantitative variables into qualitative variables. If we use appropriate discretization techniques for data, we can expect not only better performance of classification algorithms, but also accurate and concise interpretation of results and speed improvements. Various discretization techniques have been studied up to now, and however there is still demand of research on discretization studies. In this paper, we propose a new discretization technique to set the cut-point using Wasserstein distance with considering the distribution of continuous variable values with classes of data. We show the superiority of the proposed method through the performance comparison between the proposed method and the existing proven methods.
Communications for Statistical Applications and Methods
/
v.10
no.3
/
pp.879-894
/
2003
We evaluated the efficiencies of applying attribute selection methods and prior discretization to supervised learning, modelled by C4.5 and Naive Bayes. Three databases were obtained from UCI data archive, which consisted of continuous attributes except for one decision attribute. Four methods were used for attribute selection : MDI, ReliefF, Gain Ratio and Consistency-based method. MDI and ReliefF can be used for both continuous and discrete attributes, but the other two methods can be used only for discrete attributes. Discretization was performed using the Fayyad and Irani method. To investigate the effect of noise included in the database, noises were introduced into the data sets up to the extents of 10 or 20%, and then the data, including those either containing the noises or not, were processed through the steps of attribute selection, discretization and classification. The results of this study indicate that classification of the data based on selected attributes yields higher accuracy than in the case of classifying the full data set, and prior discretization does not lower the accuracy.
Communications for Statistical Applications and Methods
/
v.18
no.1
/
pp.89-102
/
2011
The discretization process that converts continuous attributes into discrete ones is a preprocessing step in data mining such as classification. Some classification algorithms can handle only discrete attributes. The purpose of discretization is to obtain discretized data without losing the information for the original data and to obtain a high predictive accuracy when discretized data are used in classification. Many discretization algorithms have been developed. This paper presents the results of our comparative study on recently proposed representative discretization algorithms from the view point of splitting versus merging and supervised versus unsupervised. We implemented R codes for discretization algorithms and made them available for public users.
Journal of the Korean Data and Information Science Society
/
v.16
no.4
/
pp.801-813
/
2005
The discretization algorithms for continuous data have been actively studied in the area of data mining. These discretizations are very important in data analysis, especially for efficient model selection in data mining. So, in this paper, we introduce the principles of some mutiway discretization algorithms including KEX, 1R and CN4 algorithm and investigate the efficiency of these algorithms through numerical study. For various underlying distribution, we compare these algorithms in view of misclassification rate.
Journal of the Korean Data and Information Science Society
/
v.16
no.4
/
pp.769-780
/
2005
Recently, the discretization algorithms for continuous data have been actively studied. But there are few articles to compare the efficiency of these algorithms. In this paper we introduce the principles of some binary discretization algorithms including C4.5, CART and QUEST and investigate the efficiency of these algorithms through numerical study. For various underlying distribution, we compare these algorithms in view of misclassification rate and MSE. Real data examples are also included.
Journal of Korean Society of Industrial and Systems Engineering
/
v.28
no.1
/
pp.1-7
/
2005
Data mining is widely used for turning huge amounts of data into useful information and knowledge in the information industry in recent years. When analyzing data set with continuous values in order to gain knowledge utilizing data mining, we often undergo a process called discretization, which divides the attribute's value into intervals. Such intervals from new values for the attribute allow to reduce the size of the data set. In addition, discretization based on rough set theory has the advantage of being easily applied. In this paper, we suggest a discretization algorithm based on Rough Set theory and SOM(Self-Organizing Map) as a means of extracting valuable information from large data set, which can be employed even in the case where there lacks of professional knowledge for the field.
International Journal of Control, Automation, and Systems
/
v.4
no.3
/
pp.293-301
/
2006
A new discretization method for calculating a sampled-data representation of a nonlinear continuous-time system is proposed. The proposed method is based on the well-known Taylor series expansion and zero-order hold (ZOH) assumption. The mathematical structure of the new discretization method is analyzed. On the basis of this structure, a sampled-data representation of a nonlinear system with a time-delayed input is derived. This method is applied to obtain a sampled-data representation of a non-affine nonlinear system, with a constant input time delay. In particular, the effect of the time discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. 'Hybrid' discretization schemes that result from a combination of the 'scaling and squaring' technique with the Taylor method are also proposed, especially under conditions of very low sampling rates. Practical issues associated with the selection of the method parameters to meet CPU time and accuracy requirements are examined as well. The performance of the proposed method is evaluated using a nonlinear system with a time-delayed non-affine input.
Most of supervised teaming algorithms could be applied after that continuous variables are transformed to categorical ones at the preprocessing stage in order to avoid the difficulty of processing continuous variables. This preprocessing stage is called global discretization, uses the class distribution list called bins. But, when data are large and the range of the variable to be discretized is very large, many sorting and merging should be performed to produce a single bin because most of global discretization methods need a single bin. Also, if new data are added, they have to perform discretization from scratch to construct categories influenced by the data because the existing methods perform discretization in batch mode. This paper proposes a method that extracts sample points and performs discretization from these sample points in order to solve these problems. Because the approach in this paper does not require merging for producing a single bin, it is efficient when large data are needed to be discretized. In this study, an experiment using real and synthetic datasets was made to compare the proposed method with an existing one.
Recently, It has focused on decision tree algorithm that can handle large dataset. However, because most of these algorithms for large datasets process data in a batch mode, if new data is added, they have to rebuild the tree from scratch. h more efficient approach to reducing the cost problem of rebuilding is an approach that builds a tree incrementally. Representative algorithms for incremental tree construction methods are BOAT and ITI and most of these algorithms use a local discretization method to handle the numeric data type. However, because a discretization requires sorted numeric data in situation of processing large data sets, a global discretization method that sorts all data only once is more suitable than a local discretization method that sorts in every node. This paper proposes an incremental tree construction method that efficiently rebuilds a tree using a global discretization method to handle the numeric data type. When new data is added, new categories influenced by the data should be recreated, and then the tree structure should be changed in accordance with category changes. This paper proposes a method that extracts sample points and performs discretiration from these sample points to recreate categories efficiently and uses confidence intervals and a tree restructuring method to adjust tree structure to category changes. In this study, an experiment using people database was made to compare the proposed method with the existing one that uses a local discretization.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.