• Title/Summary/Keyword: Data Discretization

Search Result 160, Processing Time 0.023 seconds

Discretization Method Based on Quantiles for Variable Selection Using Mutual Information

  • CHa, Woon-Ock;Huh, Moon-Yul
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.659-672
    • /
    • 2005
  • This paper evaluates discretization of continuous variables to select relevant variables for supervised learning using mutual information. Three discretization methods, MDL, Histogram and 4-Intervals are considered. The process of discretization and variable subset selection is evaluated according to the classification accuracies with the 6 real data sets of UCI databases. Results show that 4-Interval discretization method based on quantiles, is robust and efficient for variable selection process. We also visually evaluate the appropriateness of the selected subset of variables.

Discretization Method for Continuous Data using Wasserstein Distance (Wasserstein 거리를 이용한 연속형 변수 이산화 기법)

  • Ha, Sang-won;Kim, Han-joon
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.159-169
    • /
    • 2018
  • Discretization of continuous variables intended to improve the performance of various algorithms such as data mining by transforming quantitative variables into qualitative variables. If we use appropriate discretization techniques for data, we can expect not only better performance of classification algorithms, but also accurate and concise interpretation of results and speed improvements. Various discretization techniques have been studied up to now, and however there is still demand of research on discretization studies. In this paper, we propose a new discretization technique to set the cut-point using Wasserstein distance with considering the distribution of continuous variable values with classes of data. We show the superiority of the proposed method through the performance comparison between the proposed method and the existing proven methods.

Evaluation of Attribute Selection Methods and Prior Discretization in Supervised Learning

  • Cha, Woon Ock;Huh, Moon Yul
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.879-894
    • /
    • 2003
  • We evaluated the efficiencies of applying attribute selection methods and prior discretization to supervised learning, modelled by C4.5 and Naive Bayes. Three databases were obtained from UCI data archive, which consisted of continuous attributes except for one decision attribute. Four methods were used for attribute selection : MDI, ReliefF, Gain Ratio and Consistency-based method. MDI and ReliefF can be used for both continuous and discrete attributes, but the other two methods can be used only for discrete attributes. Discretization was performed using the Fayyad and Irani method. To investigate the effect of noise included in the database, noises were introduced into the data sets up to the extents of 10 or 20%, and then the data, including those either containing the noises or not, were processed through the steps of attribute selection, discretization and classification. The results of this study indicate that classification of the data based on selected attributes yields higher accuracy than in the case of classifying the full data set, and prior discretization does not lower the accuracy.

A Comparative Study on Discretization Algorithms for Data Mining (데이터 마이닝을 위한 이산화 알고리즘에 대한 비교 연구)

  • Choi, Byong-Su;Kim, Hyun-Ji;Cha, Woon-Ock
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.1
    • /
    • pp.89-102
    • /
    • 2011
  • The discretization process that converts continuous attributes into discrete ones is a preprocessing step in data mining such as classification. Some classification algorithms can handle only discrete attributes. The purpose of discretization is to obtain discretized data without losing the information for the original data and to obtain a high predictive accuracy when discretized data are used in classification. Many discretization algorithms have been developed. This paper presents the results of our comparative study on recently proposed representative discretization algorithms from the view point of splitting versus merging and supervised versus unsupervised. We implemented R codes for discretization algorithms and made them available for public users.

Comparison of Multiway Discretization Algorithms for Data Mining

  • Kim, Jeong-Suk;Jang, Young-Mi;Na, Jong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.801-813
    • /
    • 2005
  • The discretization algorithms for continuous data have been actively studied in the area of data mining. These discretizations are very important in data analysis, especially for efficient model selection in data mining. So, in this paper, we introduce the principles of some mutiway discretization algorithms including KEX, 1R and CN4 algorithm and investigate the efficiency of these algorithms through numerical study. For various underlying distribution, we compare these algorithms in view of misclassification rate.

  • PDF

Comparison of Binary Discretization Algorithms for Data Mining

  • Na, Jong-Hwa;Kim, Jeong-Mi;Cho, Wan-Sup
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.769-780
    • /
    • 2005
  • Recently, the discretization algorithms for continuous data have been actively studied. But there are few articles to compare the efficiency of these algorithms. In this paper we introduce the principles of some binary discretization algorithms including C4.5, CART and QUEST and investigate the efficiency of these algorithms through numerical study. For various underlying distribution, we compare these algorithms in view of misclassification rate and MSE. Real data examples are also included.

  • PDF

Discretization of Continuous Attributes based on Rough Set Theory and SOM (러브집합이론과 SOM을 이용한 연속형 속성의 이산화)

  • Seo Wan-Seok;Kim Jae-Yearn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Data mining is widely used for turning huge amounts of data into useful information and knowledge in the information industry in recent years. When analyzing data set with continuous values in order to gain knowledge utilizing data mining, we often undergo a process called discretization, which divides the attribute's value into intervals. Such intervals from new values for the attribute allow to reduce the size of the data set. In addition, discretization based on rough set theory has the advantage of being easily applied. In this paper, we suggest a discretization algorithm based on Rough Set theory and SOM(Self-Organizing Map) as a means of extracting valuable information from large data set, which can be employed even in the case where there lacks of professional knowledge for the field.

Time-Discretization of Time Delayed Non-Affine System via Taylor-Lie Series Using Scaling and Squaring Technique

  • Zhang Yuanliang;Chong Kil-To
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.293-301
    • /
    • 2006
  • A new discretization method for calculating a sampled-data representation of a nonlinear continuous-time system is proposed. The proposed method is based on the well-known Taylor series expansion and zero-order hold (ZOH) assumption. The mathematical structure of the new discretization method is analyzed. On the basis of this structure, a sampled-data representation of a nonlinear system with a time-delayed input is derived. This method is applied to obtain a sampled-data representation of a non-affine nonlinear system, with a constant input time delay. In particular, the effect of the time discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. 'Hybrid' discretization schemes that result from a combination of the 'scaling and squaring' technique with the Taylor method are also proposed, especially under conditions of very low sampling rates. Practical issues associated with the selection of the method parameters to meet CPU time and accuracy requirements are examined as well. The performance of the proposed method is evaluated using a nonlinear system with a time-delayed non-affine input.

An Incremental Method Using Sample Split Points for Global Discretization (전역적 범주화를 위한 샘플 분할 포인트를 이용한 점진적 기법)

  • 한경식;이수원
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.849-858
    • /
    • 2004
  • Most of supervised teaming algorithms could be applied after that continuous variables are transformed to categorical ones at the preprocessing stage in order to avoid the difficulty of processing continuous variables. This preprocessing stage is called global discretization, uses the class distribution list called bins. But, when data are large and the range of the variable to be discretized is very large, many sorting and merging should be performed to produce a single bin because most of global discretization methods need a single bin. Also, if new data are added, they have to perform discretization from scratch to construct categories influenced by the data because the existing methods perform discretization in batch mode. This paper proposes a method that extracts sample points and performs discretization from these sample points in order to solve these problems. Because the approach in this paper does not require merging for producing a single bin, it is efficient when large data are needed to be discretized. In this study, an experiment using real and synthetic datasets was made to compare the proposed method with an existing one.

Incremental Generation of A Decision Tree Using Global Discretization For Large Data (대용량 데이터를 위한 전역적 범주화를 이용한 결정 트리의 순차적 생성)

  • Han, Kyong-Sik;Lee, Soo-Won
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.487-498
    • /
    • 2005
  • Recently, It has focused on decision tree algorithm that can handle large dataset. However, because most of these algorithms for large datasets process data in a batch mode, if new data is added, they have to rebuild the tree from scratch. h more efficient approach to reducing the cost problem of rebuilding is an approach that builds a tree incrementally. Representative algorithms for incremental tree construction methods are BOAT and ITI and most of these algorithms use a local discretization method to handle the numeric data type. However, because a discretization requires sorted numeric data in situation of processing large data sets, a global discretization method that sorts all data only once is more suitable than a local discretization method that sorts in every node. This paper proposes an incremental tree construction method that efficiently rebuilds a tree using a global discretization method to handle the numeric data type. When new data is added, new categories influenced by the data should be recreated, and then the tree structure should be changed in accordance with category changes. This paper proposes a method that extracts sample points and performs discretiration from these sample points to recreate categories efficiently and uses confidence intervals and a tree restructuring method to adjust tree structure to category changes. In this study, an experiment using people database was made to compare the proposed method with the existing one that uses a local discretization.