• 제목/요약/키워드: Data Center Network

Search Result 1,424, Processing Time 0.025 seconds

유비쿼터스 기반의 복합통신망 구축 및 성능시험 (The Construction and Performance Test of Complex Networks based on Ubiquitous)

  • 홍성택;신강욱
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권4호
    • /
    • pp.23-29
    • /
    • 2011
  • K-water 연구원의 유량계 교정센터에 Zigbee, Wi-Fi, UHF 등의 USN 단말기를 이용하여 온도 및 습도, 유량, 수위, 펌프 상태 등의 데이터 취득과 무선 CCTV에 의한 교정센터 내의 실시간 현황 파악을 통해 Smart 정수장 구현을 위한 기반을 마련하고자 한다. 각종 센서로부터 취득된 데이터는 여러 형태의 USN망을 통하여 데이터 처리장치로 전송되어지고, 처리된 데이터는 스마트 폰에서도 모니터링을 할 수 있도록 구현한다. 또한, 통신망 성능분석 및 모바일 기기를 활용한 원격 모니터링 감시체계를 구현함으로서 저비용, 고효율의 USN 기반 시범사업을 추진하고자 한다.

THE APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO LANDSLIDE SUSCEPTIBILITY MAPPING AT JANGHUNG, KOREA

  • LEE SARO;LEE MOUNG-JIN;WON JOONG-SUN
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.294-297
    • /
    • 2004
  • The purpose of this study was to develop landslide susceptibility analysis techniques using artificial neural networks and then to apply these to the selected study area of Janghung in Korea. We aimed to verify the effect of data selection on training sites. Landslide locations were identified from interpretation of satellite images and field survey data, and a spatial database of the topography, soil, forest, and land use was constructed. Thirteen landslide-related factors were extracted from the spatial database. Using these factors, landslide susceptibility was analyzed using an artificial neural network. The weights of each factor were determined by the back-propagation training method. Five different training datasets were applied to analyze and verify the effect of training. Then, the landslide susceptibility indices were calculated using the trained back-propagation weights and susceptibility maps were constructed from Geographic Information System (GIS) data for the five cases. The results of the landslide susceptibility maps were verified and compared using landslide location data. GIS data were used to efficiently analyze the large volume of data, and the artificial neural network proved to be an effective tool to analyze landslide susceptibility.

  • PDF

Radio Resource Management of CoMP System in HetNet under Power and Backhaul Constraints

  • Yu, Jia;Wu, Shaohua;Lin, Xiaodong;Zhang, Qinyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권11호
    • /
    • pp.3876-3895
    • /
    • 2014
  • Recently, Heterogeneous Network (HetNet) with Coordinated Multi-Point (CoMP) scheme is introduced into Long Term Evolution-Advanced (LTE-A) systems to improve digital services for User Equipments (UEs), especially for cell-edge UEs. However, Radio Resource Management (RRM), including Resource Block (RB) scheduling and Power Allocation (PA), in this scenario becomes challenging, due to the intercell cooperation. In this paper, we investigate the RRM problem for downlink transmission of HetNet system with Joint Processing (JP) CoMP (both joint transmission and dynamic cell selection schemes), aiming at maximizing weighted sum data rate under the constraints of both transmission power and backhaul capacity. First, joint RB scheduling and PA problem is formulated as a constrained Mixed Integer Programming (MIP) which is NP-hard. To simplify the formulation problem, we decompose it into two problems of RB scheduling and PA. For RB scheduling, we propose an algorithm with less computational complexity to achieve a suboptimal solution. Then, according to the obtained scheduling results, we present an iterative Karush-Kuhn-Tucker (KKT) method to solve the PA problem. Extensive simulations are conducted to verify the effectiveness and efficiency of the proposed algorithms. Two kinds of JP CoMP schemes are compared with a non-CoMP greedy scheme (max capacity scheme). Simulation results prove that the CoMP schemes with the proposed RRM algorithms dramatically enhance data rate of cell-edge UEs, thereby improving UEs' fairness of data rate. Also, it is shown that the proposed PA algorithms can decrease power consumption of transmission antennas without loss of transmission performance.

StrokeBase: A Database of Cerebrovascular Disease-related Candidate Genes

  • Kim, Young-Uk;Kim, Il-Hyun;Bang, Ok-Sun;Kim, Young-Joo
    • Genomics & Informatics
    • /
    • 제6권3호
    • /
    • pp.153-156
    • /
    • 2008
  • Complex diseases such as stroke and cancer have two or more genetic loci and are affected by environmental factors that contribute to the diseases. Due to the complex characteristics of these diseases, identifying candidate genes requires a system-level analysis of the following: gene ontology, pathway, and interactions. A database and user interface, termed StrokeBase, was developed; StrokeBase provides queries that search for pathways, candidate genes, candidate SNPs, and gene networks. The database was developed by using in silico data mining of HGNC, ENSEMBL, STRING, RefSeq, UCSC, GO, HPRD, KEGG, GAD, and OMIM. Forty candidate genes that are associated with cerebrovascular disease were selected by human experts and public databases. The networked cerebrovascular disease gene maps also were developed; these maps describe genegene interactions and biological pathways. We identified 1127 genes, related indirectly to cerebrovascular disease but directly to the etiology of cerebrovascular disease. We found that a protein-protein interaction (PPI) network that was associated with cerebrovascular disease follows the power-law degree distribution that is evident in other biological networks. Not only was in silico data mining utilized, but also 250K Affymetrix SNP chips were utilized in the 320 control/disease association study to generate associated markers that were pertinent to the cerebrovascular disease as a genome-wide search. The associated genes and the genes that were retrieved from the in silico data mining system were compared and analyzed. We developed a well-curated cerebrovascular disease-associated gene network and provided bioinformatic resources to cerebrovascular disease researchers. This cerebrovascular disease network can be used as a frame of systematic genomic research, applicable to other complex diseases. Therefore, the ongoing database efficiently supports medical and genetic research in order to overcome cerebrovascular disease.

추정평면에서 평가한 데이터와 인공신경망에 의한 숫자음 인식 (A Numerical Speech Recognition by Parameters Estimated from the Data on the Estimated Plane and a Neural Network)

  • 최일홍;장승관;차태호;최웅세;김창석
    • 한국음향학회지
    • /
    • 제15권4호
    • /
    • pp.58-64
    • /
    • 1996
  • 본 논문은 추정평면의 데이터로부터 특징파라미터의 평가와 인공신경망에 의한 음성인식방법을 제안한다. 각 프레임에서 평가한 LPC는 매핑함수를 이용하여 추정평면으로 매핑시켰으며, 본 논문에서는 이 추정평면의 데이터로부터 C-LPC, 최대값, 최소값, 3등분할 파워 특징값을 평가하였다. 추정평면에서 평가한 특징 파라미터는 인공신경망에 입력한 음성인식 실험으로부터 원 음성신호의 시간변화에 따른 특징을 포함하고 있음을 확인하였고, 제안한 방법에 의한 인식으로부터 인식율이 약 96.3%이었다.

  • PDF

Development of a Knowledge Discovery System using Hierarchical Self-Organizing Map and Fuzzy Rule Generation

  • Koo, Taehoon;Rhee, Jongtae
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.431-434
    • /
    • 2001
  • Knowledge discovery in databases(KDD) is the process for extracting valid, novel, potentially useful and understandable knowledge form real data. There are many academic and industrial activities with new technologies and application areas. Particularly, data mining is the core step in the KDD process, consisting of many algorithms to perform clustering, pattern recognition and rule induction functions. The main goal of these algorithms is prediction and description. Prediction means the assessment of unknown variables. Description is concerned with providing understandable results in a compatible format to human users. We introduce an efficient data mining algorithm considering predictive and descriptive capability. Reasonable pattern is derived from real world data by a revised neural network model and a proposed fuzzy rule extraction technique is applied to obtain understandable knowledge. The proposed neural network model is a hierarchical self-organizing system. The rule base is compatible to decision makers perception because the generated fuzzy rule set reflects the human information process. Results from real world application are analyzed to evaluate the system\`s performance.

  • PDF

Towards a Deep Analysis of High School Students' Outcomes

  • Barila, Adina;Danubianu, Mirela;Paraschiv, Andrei Marcel
    • International Journal of Computer Science & Network Security
    • /
    • 제21권6호
    • /
    • pp.71-76
    • /
    • 2021
  • Education is one of the pillars of sustainable development. For this reason, the discovery of useful information in its process of adaptation to new challenges is treated with care. This paper aims to present the initiation of a process of exploring the data collected from the results obtained by Romanian students at the BBaccalaureate (the Romanian high school graduation) exam, through data mining methods, in order to try an in-depth analysis to find and remedy some of the causes that lead to unsatisfactory results. Specifically, a set of public data was collected from the website of the Ministry of Education, on which several classification methods were tested in order to find the most efficient modeling algorithm. It is the first time that this type of data is subjected to such interests.

A New Model to Enhance Efficiency in Distributed Data Mining Using Mobile Agent

  • Bardab, Saeed Ngmaldin;Ahmed, Tarig Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • 제21권3호
    • /
    • pp.275-286
    • /
    • 2021
  • As a result of the vast amount of data that is geographically found in different locations. Distributed data mining (DDM) has taken a center stage in data mining. The use of mobile agents to enhance efficiency in DDM has gained the attention of industries, commerce and academia because it offers serious suggestions on how to solve inherent problems associated with DDM. In this paper, a novel DDM model has been proposed by using a mobile agent to enhance efficiency. The main idea behind the model is to use the Naive Bayes algorithm to give the mobile agent the ability to learn, compare, get and store the results on it from each server which has different datasets and we found that the accuracy increased roughly by 0.9% which is our main target.

Respiratory Motion Correction on PET Images Based on 3D Convolutional Neural Network

  • Hou, Yibo;He, Jianfeng;She, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권7호
    • /
    • pp.2191-2208
    • /
    • 2022
  • Motion blur in PET (Positron emission tomography) images induced by respiratory motion will reduce the quality of imaging. Although exiting methods have positive performance for respiratory motion correction in medical practice, there are still many aspects that can be improved. In this paper, an improved 3D unsupervised framework, Res-Voxel based on U-Net network was proposed for the motion correction. The Res-Voxel with multiple residual structure may improve the ability of predicting deformation field, and use a smaller convolution kernel to reduce the parameters of the model and decrease the amount of computation required. The proposed is tested on the simulated PET imaging data and the clinical data. Experimental results demonstrate that the proposed achieved Dice indices 93.81%, 81.75% and 75.10% on the simulated geometric phantom data, voxel phantom data and the clinical data respectively. It is demonstrated that the proposed method can improve the registration and correction performance of PET image.

Predicting the Adoption of Health Wearables with an Emphasis on the Perceived Ethics of Biometric Data

  • Tahereh Saheb;Tayebeh Saheb
    • Asia pacific journal of information systems
    • /
    • 제31권1호
    • /
    • pp.121-140
    • /
    • 2021
  • The main purpose of this research is to understand the strongest predictors of wearable adoption among athletes with an emphasis on the perceived ethics of biometric data. We performed a word co-occurrence study of biometrics research to determine the ethical constructs of biometric data. A questionnaire incorporating the Unified Theory of Acceptance and Use of Technology (UTAUT), Health Belief Model and Biometric Data Ethics was then designed to develop a neural network model to predict the adoption of wearable sensors among athletes. Our model shows that wearable adoption's strongest predictors are perceived ethics, perceived profit, and perceived threat; which can be categorized as professional stressors. The key theoretical contribution of this paper is to extend the literature on UTAUT by developing a predictive modeling of factors affecting acceptance of wearables by athletes, and highlighting the ethical implications of athlete's adoption of wearables.