Load balancing is a significant technique to prolong a network's lifetime in sensor network. This paper introduces a hybrid approach named as Load Distributing Hybrid Routing Protocol (LDHRP) composed with a border node routing protocol (BDRP) and greedy forwarding (GF) strategy which will make the routing effective, especially in mobility scenarios. In an existing solution, because of the high network complexity, the data delivery latency increases. To overcome this limitation, a new approach is proposed in which the source node transmits the data to its respective destination via border nodes or greedily until the complete data is transmitted. In this way, the whole load of a network is evenly distributed among the participating nodes. However, border node is mainly responsible in aggregating data from the source and further forwards it to mobile sink; so there will be fewer chances of energy expenditure in the network. In addition to this, number of hop counts while transmitting the data will be reduced as compared to the existing solutions HRLBP and ZRP. From the simulation results, we conclude that proposed approach outperforms well than existing solutions in terms including end-to-end delay, packet loss rate and so on and thus guarantees enhancement in lifetime.
Long-Term Evolution employs a hard handover procedure. To reduce the interruption of data flow, downlink data is forwarded from the serving eNodeB (eNB) to the target eNB during handover. In cellular networks, unbalanced loads may lead to congestion in both the radio network and the backhaul network, resulting in bad end-to-end performance as well as causing unfairness among the users sharing the bottleneck link. This work focuses on congestion in the transport network. Handovers toward less loaded cells can help redistribute the load of the bottleneck link; such a mechanism is known as load balancing. The results show that the introduction of such a handover mechanism into the simulation environment positively influences the system performance. This is because terminals spend more time in the cell; hence, a better reception is offered. The utilization of load balancing can be used to further improve the performance of cellular systems that are experiencing congestion on a bottleneck link due to an uneven load.
Typically a wireless sensor network consists of a number of nodes that sense surrounding environment and collaboratively work to process and route the sensing data to a sink or gateway node. We propose an architecture with support of multiple routers in IPv6-based Low-power Wireless Personal Area Network (6LoWPAN). Our architecture provides traffic load balancing and increases network lifetime as well as self-healing mechanism so that in case of a router failure the network still can remain operational. Each router sends its own Router Advertisement message to nodes and all the nodes receiving the messages can select which router is the best router with the minimum hop-count and link information. We have implemented the architecture and assert our architecture helps in traffic load balancing and reducing data transmission delay for 6LoWPAN.
하둡 맵리듀스와 같은 분산 컴퓨팅 플랫폼이 개발됨에 따라, 기존 단일 컴퓨터 상에서 수행되는 질의 처리 기법을 분산 컴퓨팅 환경에서 효율적으로 수행하는 것이 필요하다. 특히, 주어진 두 데이터 집합에서 유사도가 높은 모든 데이터 쌍을 탐색하는 유사 조인 질의를 분산 컴퓨팅 환경에서 수행하려는 연구가 있어 왔다. 그러나 분산 병렬 환경에서의 기존 유사 조인 질의처리 기법은 데이터 전송 비용만을 고려하기 때문에 클러스터 간에 비균등 연산 부하 분산의 문제점이 존재한다. 본 논문에서는 분산 컴퓨팅 환경에서 효율적인 유사 조인 처리를 위한 행렬 기반 부하 분산 알고리즘을 제안한다. 제안하는 알고리즘은 클러스터의 균등 부하 분산을 위해 행렬을 이용하여 예상되는 연산 부하를 측정하고 이에 따라 파티션을 생성한다. 아울러, 클러스터에서 질의 처리에 사용되지 않는 데이터를 필터링함으로서 연산 부하를 감소시킨다. 마지막으로 성능 평가를 통해 제안하는 알고리즘이 기존 기법에 비해 질의 처리 성능 측면에서 우수함을 보인다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권7호
/
pp.3093-3115
/
2020
Network anomaly detection system plays an essential role in detecting network anomaly and ensuring network security. Anomaly detection system based machine learning has become an increasingly popular solution. However, due to the unbalance and high-dimension characteristics of network traffic, the existing methods unable to achieve the excellent performance of high accuracy and low false alarm rate. To address this problem, a new network anomaly detection method based on data balancing and recursive feature addition is proposed. Firstly, data balancing algorithm based on improved KNN outlier detection is designed to select part respective data on each category. Combination optimization about parameters of improved KNN outlier detection is implemented by genetic algorithm. Next, recursive feature addition algorithm based on correlation analysis is proposed to select effective features, in which a cross contingency test is utilized to analyze correlation and obtain a features subset with a strong correlation. Then, random forests model is as the classification model to detection anomaly. Finally, the proposed algorithm is evaluated on benchmark datasets KDD Cup 1999 and UNSW_NB15. The result illustrates the proposed strategies enhance accuracy and recall, and decrease the false alarm rate. Compared with other algorithms, this algorithm still achieves significant effects, especially recall in the small category.
Asymmetrical and unbalanced features such as rotor blade of helicopter, actuator of hard-disk in personal computer are usually manufactured with composite materials. In this case, mass distributions and center of gravity of the parts are important because of their static balancing. Therefore in the manufacturing processes, it is needed to check out the exact data of weight and gravity center. In this study, it has been studied experimentally the balancing of laminated rotor blade by using multiple-point weighing method and lab-view system.
이 논문은 블록체인[1] 기술을 활용한 소규모 분산전력자원 거래 플랫폼에서의 정산소요시간에 대한 고찰이다. 먼저 연구에 적용한 "AMI 인프라를 활용한 국민 VPP 에너지 관리 시스템 (AI 기반의 에너지 거래 플랫폼)"을 소개한 후, 테스트베드 환경 내 IoT 전력 빅데이터[2] 분석으로 인증된 프로슈머의 발전(감축)량에 근거하여 지급되는 블록체인 암호화폐 코인의 정산과정 그리고 소요시간에 대하여 알아본다. 더불어 기존 람다 아키텍처에 MapD[3]를 적용한 GPU Fast 빅데이터 전력 빅데이터 분석 시스템 구성을 제시 한다.
대용량 볼륨 데이타를 가시화하는 효과적인 방법인 후-정열 병렬 렌더링은 부하균형에 의해 성능이 결정된다. 기존의 정적 데이타 분할 방법은 태스크 병렬성만의 관점에서는 자기균형을 쉽게 얻을 수 있었지만, 데이타 내부의 빈 공간을 고려하지 않았기 때문에 데이타 병렬성의 관점에서는 심각한 불균형을 초래할 수 있었다. 본 논문은 태스크 병렬성과 데이타 병렬성이 함께 고려된, 적응적이며 확장적인 부하 균형 기법을 제안한다. 우리는 계층적 자료 구조인 옥트리와 BSP-트리를 효과적으로 결합하여 볼륨 데이타의 실제 영역만을 추출하여 렌더링 노드들로 균등하게 분산시켰으며, 각 렌더링 노드들에서는 3차원 클러스터링 알고리즘을 적용하여 렌더링 순서를 효과적으로 결정하였다. 제안하는 방법은 기존의 정적 데이타 분산 기법에 비해 최대 22배의 병렬성을 높였고 동기화 비용을 낮추어 렌더링 성능을 크게 향상시켰음을 실험을 통해 알 수 있었다.
최근 선박/해양설치선의 운항 과정에서 오염물질과 온실가스 배출을 최소화하기 위한 전기추진개발이 진행되고 있다. 이에 필요한 선박/해양설치선 내 ESS 시스템인 배터리의 사용과 효율적 관리에 대한 중요성이 높아지고 있다. 통상적으로 Battery가 적용된 ESS는 BMS에 의해 Cell Balancing 및 수명이 실시간 모니터링이 되고 있다. 선박/해양설치선에는 여러 개소의 ESS Room을 탑재하고 있으며, 최근 전기추진개발 수요로 동일 사양의 ESS 시스템이 적용된 ESS Room이 구성되고 있다. 본 논문에서는 각 Room의 BMS Data를 비교하여 Battery Pack 및 Cell Balancing의 고장을 추가적으로 예측 진단하는 알고리즘을 제안한다. 제안한 알고리즘은 선박/해양설치선의 환경변화에 따른 각 ESS Room의 BMS Data를 비교하여 정확한 상태정보를 측정하고 신뢰성있게 모니터링하여 대형사고를 미연에 방지할 수 있다.
Purpose The purpose of this study is to develop a prediction model and decision rules for the elderly's suicidal ideation based on the Korean Welfare Panel survey data. By utilizing this data, we obtained many decision rules to predict the elderly's suicide ideation. Design/methodology/approach This study used classification analysis to derive decision rules to predict on the basis of decision tree technique. Weka 3.8 is used as the data mining tool in this study. The decision tree algorithm uses J48, also known as C4.5. In addition, 66.6% of the total data was divided into learning data and verification data. We considered all possible variables based on previous studies in predicting suicidal ideation of the elderly. Finally, 99 variables including the target variable were used. Classification analysis was performed by introducing sampling technique through backward elimination and data balancing. Findings As a result, there were significant differences between the data sets. The selected data sets have different, various decision tree and several rules. Based on the decision tree method, we derived the rules for suicide prevention. The decision tree derives not only the rules for the suicidal ideation of the depressed group, but also the rules for the suicidal ideation of the non-depressed group. In addition, in developing the predictive model, the problem of over-fitting due to the data imbalance phenomenon was directly identified through the application of data balancing. We could conclude that it is necessary to balance the data on the target variables in order to perform the correct classification analysis without over-fitting. In addition, although data balancing is applied, it is shown that performance is not inferior in prediction rate when compared with a biased prediction model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.