• 제목/요약/키워드: Data Balancing

검색결과 506건 처리시간 0.028초

Enhanced Hybrid Routing Protocol for Load Balancing in WSN Using Mobile Sink Node

  • Kaur, Rajwinder;Shergi, Gurleen Kaur
    • Industrial Engineering and Management Systems
    • /
    • 제15권3호
    • /
    • pp.268-277
    • /
    • 2016
  • Load balancing is a significant technique to prolong a network's lifetime in sensor network. This paper introduces a hybrid approach named as Load Distributing Hybrid Routing Protocol (LDHRP) composed with a border node routing protocol (BDRP) and greedy forwarding (GF) strategy which will make the routing effective, especially in mobility scenarios. In an existing solution, because of the high network complexity, the data delivery latency increases. To overcome this limitation, a new approach is proposed in which the source node transmits the data to its respective destination via border nodes or greedily until the complete data is transmitted. In this way, the whole load of a network is evenly distributed among the participating nodes. However, border node is mainly responsible in aggregating data from the source and further forwards it to mobile sink; so there will be fewer chances of energy expenditure in the network. In addition to this, number of hop counts while transmitting the data will be reduced as compared to the existing solutions HRLBP and ZRP. From the simulation results, we conclude that proposed approach outperforms well than existing solutions in terms including end-to-end delay, packet loss rate and so on and thus guarantees enhancement in lifetime.

Congestion-Aware Handover in LTE Systems for Load Balancing in Transport Network

  • Marwat, Safdar Nawaz Khan;Meyer, Sven;Weerawardane, Thushara;Goerg, Carmelita
    • ETRI Journal
    • /
    • 제36권5호
    • /
    • pp.761-771
    • /
    • 2014
  • Long-Term Evolution employs a hard handover procedure. To reduce the interruption of data flow, downlink data is forwarded from the serving eNodeB (eNB) to the target eNB during handover. In cellular networks, unbalanced loads may lead to congestion in both the radio network and the backhaul network, resulting in bad end-to-end performance as well as causing unfairness among the users sharing the bottleneck link. This work focuses on congestion in the transport network. Handovers toward less loaded cells can help redistribute the load of the bottleneck link; such a mechanism is known as load balancing. The results show that the introduction of such a handover mechanism into the simulation environment positively influences the system performance. This is because terminals spend more time in the cell; hence, a better reception is offered. The utilization of load balancing can be used to further improve the performance of cellular systems that are experiencing congestion on a bottleneck link due to an uneven load.

6LowPAN 에서 멀티 라우터 지원 방법 (A Multi Router Support Mechanism in 6LowPAN)

  • 정석;임채성;정원도;유승화;노병희;김기형
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2007년도 학술대회
    • /
    • pp.279-282
    • /
    • 2007
  • Typically a wireless sensor network consists of a number of nodes that sense surrounding environment and collaboratively work to process and route the sensing data to a sink or gateway node. We propose an architecture with support of multiple routers in IPv6-based Low-power Wireless Personal Area Network (6LoWPAN). Our architecture provides traffic load balancing and increases network lifetime as well as self-healing mechanism so that in case of a router failure the network still can remain operational. Each router sends its own Router Advertisement message to nodes and all the nodes receiving the messages can select which router is the best router with the minimum hop-count and link information. We have implemented the architecture and assert our architecture helps in traffic load balancing and reducing data transmission delay for 6LoWPAN.

  • PDF

분산 컴퓨팅 환경에서 효율적인 유사 조인 질의 처리를 위한 행렬 기반 필터링 및 부하 분산 알고리즘 (Matrix-based Filtering and Load-balancing Algorithm for Efficient Similarity Join Query Processing in Distributed Computing Environment)

  • 양현식;장미영;장재우
    • 한국콘텐츠학회논문지
    • /
    • 제16권7호
    • /
    • pp.667-680
    • /
    • 2016
  • 하둡 맵리듀스와 같은 분산 컴퓨팅 플랫폼이 개발됨에 따라, 기존 단일 컴퓨터 상에서 수행되는 질의 처리 기법을 분산 컴퓨팅 환경에서 효율적으로 수행하는 것이 필요하다. 특히, 주어진 두 데이터 집합에서 유사도가 높은 모든 데이터 쌍을 탐색하는 유사 조인 질의를 분산 컴퓨팅 환경에서 수행하려는 연구가 있어 왔다. 그러나 분산 병렬 환경에서의 기존 유사 조인 질의처리 기법은 데이터 전송 비용만을 고려하기 때문에 클러스터 간에 비균등 연산 부하 분산의 문제점이 존재한다. 본 논문에서는 분산 컴퓨팅 환경에서 효율적인 유사 조인 처리를 위한 행렬 기반 부하 분산 알고리즘을 제안한다. 제안하는 알고리즘은 클러스터의 균등 부하 분산을 위해 행렬을 이용하여 예상되는 연산 부하를 측정하고 이에 따라 파티션을 생성한다. 아울러, 클러스터에서 질의 처리에 사용되지 않는 데이터를 필터링함으로서 연산 부하를 감소시킨다. 마지막으로 성능 평가를 통해 제안하는 알고리즘이 기존 기법에 비해 질의 처리 성능 측면에서 우수함을 보인다.

A Novel Network Anomaly Detection Method based on Data Balancing and Recursive Feature Addition

  • Liu, Xinqian;Ren, Jiadong;He, Haitao;Wang, Qian;Sun, Shengting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.3093-3115
    • /
    • 2020
  • Network anomaly detection system plays an essential role in detecting network anomaly and ensuring network security. Anomaly detection system based machine learning has become an increasingly popular solution. However, due to the unbalance and high-dimension characteristics of network traffic, the existing methods unable to achieve the excellent performance of high accuracy and low false alarm rate. To address this problem, a new network anomaly detection method based on data balancing and recursive feature addition is proposed. Firstly, data balancing algorithm based on improved KNN outlier detection is designed to select part respective data on each category. Combination optimization about parameters of improved KNN outlier detection is implemented by genetic algorithm. Next, recursive feature addition algorithm based on correlation analysis is proposed to select effective features, in which a cross contingency test is utilized to analyze correlation and obtain a features subset with a strong correlation. Then, random forests model is as the classification model to detection anomaly. Finally, the proposed algorithm is evaluated on benchmark datasets KDD Cup 1999 and UNSW_NB15. The result illustrates the proposed strategies enhance accuracy and recall, and decrease the false alarm rate. Compared with other algorithms, this algorithm still achieves significant effects, especially recall in the small category.

Lab-view를 이용한 적층 블레이드의 정적 밸런싱 (Static Balancing of Laminated Rotor Blade by Lab-view)

  • 김기성;공재현;천세영;허관도
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.391-394
    • /
    • 2009
  • Asymmetrical and unbalanced features such as rotor blade of helicopter, actuator of hard-disk in personal computer are usually manufactured with composite materials. In this case, mass distributions and center of gravity of the parts are important because of their static balancing. Therefore in the manufacturing processes, it is needed to check out the exact data of weight and gravity center. In this study, it has been studied experimentally the balancing of laminated rotor blade by using multiple-point weighing method and lab-view system.

  • PDF

블록체인 네트워크를 이용한 소규모 분산전력 거래플랫폼의 정산소요시간에 관한 연구 (A Study on the Accounts Balancing Time of Small Distributed Power Trading Platform Using Block Chain Network)

  • 김영곤;허걸;최중인;위재우
    • 에너지공학
    • /
    • 제27권4호
    • /
    • pp.86-91
    • /
    • 2018
  • 이 논문은 블록체인[1] 기술을 활용한 소규모 분산전력자원 거래 플랫폼에서의 정산소요시간에 대한 고찰이다. 먼저 연구에 적용한 "AMI 인프라를 활용한 국민 VPP 에너지 관리 시스템 (AI 기반의 에너지 거래 플랫폼)"을 소개한 후, 테스트베드 환경 내 IoT 전력 빅데이터[2] 분석으로 인증된 프로슈머의 발전(감축)량에 근거하여 지급되는 블록체인 암호화폐 코인의 정산과정 그리고 소요시간에 대하여 알아본다. 더불어 기존 람다 아키텍처에 MapD[3]를 적용한 GPU Fast 빅데이터 전력 빅데이터 분석 시스템 구성을 제시 한다.

계층 자료구조의 결합과 3차원 클러스터링을 이용하여 적응적으로 부하 균형된 GPU-클러스터 기반 병렬 볼륨 렌더링 (Adaptive Load Balancing Scheme using a Combination of Hierarchical Data Structures and 3D Clustering for Parallel Volume Rendering on GPU Clusters)

  • 이원종;박우찬;한탁돈
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권1_2호
    • /
    • pp.1-14
    • /
    • 2006
  • 대용량 볼륨 데이타를 가시화하는 효과적인 방법인 후-정열 병렬 렌더링은 부하균형에 의해 성능이 결정된다. 기존의 정적 데이타 분할 방법은 태스크 병렬성만의 관점에서는 자기균형을 쉽게 얻을 수 있었지만, 데이타 내부의 빈 공간을 고려하지 않았기 때문에 데이타 병렬성의 관점에서는 심각한 불균형을 초래할 수 있었다. 본 논문은 태스크 병렬성과 데이타 병렬성이 함께 고려된, 적응적이며 확장적인 부하 균형 기법을 제안한다. 우리는 계층적 자료 구조인 옥트리와 BSP-트리를 효과적으로 결합하여 볼륨 데이타의 실제 영역만을 추출하여 렌더링 노드들로 균등하게 분산시켰으며, 각 렌더링 노드들에서는 3차원 클러스터링 알고리즘을 적용하여 렌더링 순서를 효과적으로 결정하였다. 제안하는 방법은 기존의 정적 데이타 분산 기법에 비해 최대 22배의 병렬성을 높였고 동기화 비용을 낮추어 렌더링 성능을 크게 향상시켰음을 실험을 통해 알 수 있었다.

해양설치선 ESS Room의 BMS정보를 활용한 Battery 고장예측 (Battery Failure Prediction using BMS Information of ESS Rooms at Offshore Installation Vessel)

  • 김우영;천봉원;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.59-61
    • /
    • 2021
  • 최근 선박/해양설치선의 운항 과정에서 오염물질과 온실가스 배출을 최소화하기 위한 전기추진개발이 진행되고 있다. 이에 필요한 선박/해양설치선 내 ESS 시스템인 배터리의 사용과 효율적 관리에 대한 중요성이 높아지고 있다. 통상적으로 Battery가 적용된 ESS는 BMS에 의해 Cell Balancing 및 수명이 실시간 모니터링이 되고 있다. 선박/해양설치선에는 여러 개소의 ESS Room을 탑재하고 있으며, 최근 전기추진개발 수요로 동일 사양의 ESS 시스템이 적용된 ESS Room이 구성되고 있다. 본 논문에서는 각 Room의 BMS Data를 비교하여 Battery Pack 및 Cell Balancing의 고장을 추가적으로 예측 진단하는 알고리즘을 제안한다. 제안한 알고리즘은 선박/해양설치선의 환경변화에 따른 각 ESS Room의 BMS Data를 비교하여 정확한 상태정보를 측정하고 신뢰성있게 모니터링하여 대형사고를 미연에 방지할 수 있다.

  • PDF

의사결정나무 기법을 이용한 노인들의 자살생각 예측모형 및 의사결정 규칙 개발 (A Development of Suicidal Ideation Prediction Model and Decision Rules for the Elderly: Decision Tree Approach)

  • 김덕현;유동희;정대율
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제28권3호
    • /
    • pp.249-276
    • /
    • 2019
  • Purpose The purpose of this study is to develop a prediction model and decision rules for the elderly's suicidal ideation based on the Korean Welfare Panel survey data. By utilizing this data, we obtained many decision rules to predict the elderly's suicide ideation. Design/methodology/approach This study used classification analysis to derive decision rules to predict on the basis of decision tree technique. Weka 3.8 is used as the data mining tool in this study. The decision tree algorithm uses J48, also known as C4.5. In addition, 66.6% of the total data was divided into learning data and verification data. We considered all possible variables based on previous studies in predicting suicidal ideation of the elderly. Finally, 99 variables including the target variable were used. Classification analysis was performed by introducing sampling technique through backward elimination and data balancing. Findings As a result, there were significant differences between the data sets. The selected data sets have different, various decision tree and several rules. Based on the decision tree method, we derived the rules for suicide prevention. The decision tree derives not only the rules for the suicidal ideation of the depressed group, but also the rules for the suicidal ideation of the non-depressed group. In addition, in developing the predictive model, the problem of over-fitting due to the data imbalance phenomenon was directly identified through the application of data balancing. We could conclude that it is necessary to balance the data on the target variables in order to perform the correct classification analysis without over-fitting. In addition, although data balancing is applied, it is shown that performance is not inferior in prediction rate when compared with a biased prediction model.