오늘날 빅데이터로부터 유의미한 결과를 도출하는 연구가 활발히 진행되고 있다. 본 논문에선 빅데이터의 데이터의 영역들을 파티션(partition)으로 설정하고 각 파티션들의 대표 값을 계산하여 변수들 사이의 상관관계를 분석 할 수 있는 파티션 기반 빅데이터 분석 알고리즘을 제안한다. 본 논문에선 파티션의 크기조절이 가능한 파티션 기반 빅데이터 분석 알고리즘의 파티션 크기 변화에 따른 시각화 결과를 비교분석하였다. 제안한 파티션 기반 빅데이터 분석 알고리즘을 검증하기 위해 의류 회사 'A'의 빅데이터를 분석하여 온도와 판매 가격 변화에 따른 상품의 판매량 변화를 분석하고 시각화하여 유의미한 결과를 얻을 수 있었다.
빅데이터 분석은 데이터베이스에 잘 정리된 정형 데이터뿐만 아니라 인터넷, 소셜 네트워크 서비스, 모바일 환경에서 생성되는 웹 문서, 이메일, 소셜 데이터 등 비정형 데이터를 효과적으로 분석하는 기술을 말한다. 대부분의 빅데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 이에 해당된다. 글로벌 리서치 기관들은 빅데이터 분석을 2011년 이래로 가장 주목받는 신기술로 지목해오고 있다. 따라서 대부분의 산업에서 기업들은 빅데이터의 적용을 통해 새로운 가치 창출을 위해 노력을 하고 있다. 본 연구에서는 다음 커뮤니케이션의 빅데이터 분석 도구인 소셜 매트릭스를 활용하여 분석하였다. 2017년 10월 8일 시점 1개월 기간을 설정하여 "사물인터넷" 키워드에 대한 대중들의 인식을 분석하였다. 빅데이터 분석의 결과는 다음과 같다. 첫째, 사물인터넷 키워드에 대한 1위 연관 검색어는 기술(995)인 것으로 나타났다. 결과를 바탕으로 연구의 한계와 시사점을 제시하고자 한다.
Journal of the Korean Data and Information Science Society
/
제24권6호
/
pp.1409-1419
/
2013
최근 종단자료 분석방법으로 많이 연구되는 잠재성장모형으로 청소년 패널자료를 분석하였다. 본 연구에서 잠재성장모형 분석에서 비조건적 모형을 좀 더 빠르게 찾기 위해 비조건적 모형에 반복측정 분산분석의 결과를 활용하였다. 또한, 비조건적 모형을 결정하기 위해 기존에 주로 사용된 6개 유형, 2차모형과 반복측정분산분석의 결과를 적용한 모형들을 비교하였다.
기종점 데이터는 수요 분석 및 서비스 설계를 위해서 대중교통, 도로운영 등 다양한 분야에서 저장 및 활용되고 있다. 최근 빅데이터의 활용성이 증대되면서 기종점 데이터의 분석 및 활용에 대한 수요도 함께 증가하고 있다. 기존의 일반적인 교통 정보 데이터가 수집장비 수(n)에 비례하여 데이터양이 증가(α·n)하는 것과는 다르게, 기종점 데이터는 수집지점 수(n)의 증가에 따라 수집 데이터의 양이 기하급수적으로 증가(α·n2)하는 경향이 있다. 이로 인하여 기종점 데이터를 원시 데이터의 형태로 장기간 저장하고 빅데이터 분석에 활용하는 것은 대용량의 저장 공간이 필요하다는 것을 고려할 때 실용적 대안으로 여겨지지 않고 있다. 이와 함께 기종점 데이터는 0~10 사이의 작은 수요 부분에 패턴화된 형태와 무작위 적인 형태의 데이터가 섞여있어 작은 수요가 그룹화되어 발생하는 주요 패턴을 추출하기에 어려움이 있다. 이러한 기종점 데이터의 저장용량의 한계와 패턴화 분석의 한계를 극복하고자 본 연구에서는 주성분 분석을 활용한 대중교통 기종점 데이터의 압축 및 분석 방법을 제안하였다. 본 연구에서는 서울시와 세종시의 대중교통 이용 데이터를 활용하여 모빌리티 데이터를 분석하고, 모빌리티 기종점 데이터에 포함된 무작위 성향이 높은 데이터를 제거하기 위해 주성분분석 기반의 데이터 압축 및 복원에 관한 연구를 수행하였다. 주성분분석으로 분해된 기종점 데이터와 원데이터를 비교하여 주요한 수요 패턴을 찾고 이를 통해 압축률과 복원율을 높일 수 있는 주성분 범위를 제안하였다. 본 연구에서 분석한 결과, 서울시 기준 1~80, 세종시 기준 1~60까지의 주성분을 사용할 경우 주요 이동 데이터의 손실 없이 기종점 데이터에 포함되어있는 노이즈를 제거하고 데이터를 압축 및 복원이 가능하였다.
위험관리 시스템은 단 시간에 의사결정하기 위해 스트림 데이터를 실시간으로 분석 할 수 있어야 한다. 많은 데이터 분석 시스템은 CPU와 디스크 데이터베이스로 구성되어 있다. 하지만, cpu 기반 시스템은 스트림 데이터를 실시간으로 분석하는데 어려움이 있다. 스트림 데이터는 1ms부터 1시간, 1일까지 생성주기가 다양하다. 한 개의 센서가 생성하는 데이터는 작다. 하지만 수 만개의 센서가 생성하는 데이터는 매우 크다. 예를 들어 10만개 센서가 1초에 1GB 데이터를 생성한다면, CPU 기반 시스템은 이를 분석 할 수 없다. 이러한 이유로 실시간 스트림 데이터 분석 시스템은 빠른 처리 속도와 확장성이 필요하다. 본 논문에서는 GPU와 하이브리드 데이터베이스를 이용한 시각화 가속 기술을 제안한다. 제안한 기술을 평가하기 위해 우리는 지하 파이프라인에 설치된 센서와 트윗 데이터를 활용하여 실시간 릭 탐지 시각적 분석 시스템에 적용했다.
빅데이터 분석은 데이터 저장소에 저장된 대용량 데이터 속에서 의미 있는 새로운 상관관계, 패턴, 추세를 발견하여 새로운 가치를 창출하는 과정이다. 또한 대부분의 빅데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 이에 해당된다. 그리고 빅데이터 분석 도구인 R언어를 이용하여 전-처리된 텍스트 데이터를 이용하여 다양한 시각화 함수를 통해 분석결과를 표현할 수 있다. 본 연구에서 사용된 데이터는 한국정보통신학회 학회지 논문 중에서 2021년 3월호 논문 21편을 대상으로 분석을 하였다. 최종 분석결과는 가장 많이 언급된 키워드는 "데이터"가 305회로 1위를 차지하였다. 따라서 이러한 분석결과를 바탕으로 연구의 한계와 이론적 실무적 시사점을 제시하고자 한다.
오픈과학의 흐름에서 데이터 공유와 재이용은 중요한 연구자의 활동이 되어가고 있다. 데이터 공유와 재이용에 관한 여러 논의 중에서 데이터학술지와 데이터논문의 발간이 가시적인 결과를 보여주고 있다. 데이터학술지는 여러 학문 분야에서 발간되고 있으며, 논문의 수도 점차 증가하고 있다. 데이터논문은 데이터 자체와는 다르게 인용을 주고 받는 활동이 포함되어, 따라서 이들이 형성하는 고유한 지적구조가 생겨나게 된다. 본 연구는 데이터학술지와 데이터논문이 학술커뮤니티에서 구성하는 지적구조를 규명하고자 Web of Science에 색인된 14종의 데이터학술지와 6,086건의 데이터논문과 인용된 참고문헌 84,908건을 분석하였다. 저자사항과 함께 동시인용분석과 서지결합분석을 네트워크로 시각화하여 데이터논문이 형성한 세부 주제 분야를 규명하였다. 분석결과, 저자, 저자소속기관, 국가를 추출하여 출현빈도를 살펴보면, 전통적인 학술지 논문과 다른 양상을 보인다. 이러한 결과는 데이터의 생산이 용이한 기관과 국가에 주로 데이터논문을 출간하기 때문이라고 해석될 수 있다. 동시인용분석와 서지결합분석 모두 분석도구, 데이터베이스, 게놈구성 등이 주된 세부 주제 영역으로 나타났다. 동시인용분석결과는 9개의 군집으로 형성되었는데, 특정 주제 분야로 나타난 영역은 수질과 기후 등의 분야이다. 서지결합분석은 총 27개의 컴포넌트로 구성되었는데, 수질, 기후 이 외에도 해양, 대기 등의 세부 주제 영역이 파악되었다. 특기할만한 사항으로는 사회과학 분야의 주제 영역도 나타났다는 점이다.
본 연구는 데이터사서의 주요 직무와 핵심 역량을 알아보기 위하여 75개의 미국 데이터사서 구인광고의 내용 분석을 수행하였고, 미국과 캐나다 현직 데이터사서를 대상으로 설문을 진행하여 105명의 응답을 수집 후 통계 분석을 진행하였다. 내용 분석과 통계 분석을 종합한 결과, 데이터사서의 주요 직무는 collaboration, workshops, trainings, conferences, data service, research consultation, 그리고 research support 관련 직무로 파악되었다. 핵심 역량은 communication skill, teaching, diversity, inclusion, and equality, data management, 그리고 data tool 관련 역량으로 나타났다. 본 연구는 가장 최신의 데이터를 이용하여 데이터사서의 주요 직무 및 핵심 역량을 분석하고 현직자의 의견을 수렴했다는 점에서 의의를 가진다. 이는 향후 이어질 데이터사서의 직무만족도, 이용자만족도, 인식조사에 기초연구로 이용될 수 있을 것이다.
컴퓨터 포렌식 관점에서 디스크의 비할당 영역(unallocated space)에 존재하는 데이터를 분석하는 것은 삭제된 데이터를 조사할 수 있다는 점에서 의미가 있다. 하지만 대부분의 경우에 비할당 영역에 존재하는 데이터는 응용 프로그램으로 읽을 수 있는 완전한 파일의 형태가 아닌 단편화된 파편(Fragment)으로 존재하며 이는 암호화되거나 압축된 형식으로 존재하기도 한다. 특히 데이터의 일부만 남아있고 나머지는 다른 데이터로 덮여 쓰인 상태의 데이터 파편을 분석하는 것은 매우 어려운 일이며, 특히 존재하는 데이터 파편이 압축되거나 암호화된 경우에는 데이터가 랜덤(Random)한 특성을 가지기 때문에 통계 분석이나 시그니처 분석과 같은 기존의 데이터 파편 분석 방법만으로는 의미 있는 정보를 획득할 수 없게 된다. 따라서 파일 파편의 압축 및 암호화 여부를 판단하는 선 처리 작업이 필요하며 압축된 파편은 압축 해제를 시도해야 한다. 압축 해제로서 획득한 평문 데이터 파편은 기존에 제시된 데이터 파편 분석 방식으로 분석할 수 있다. 본 논문에서는 컴퓨터 포렌식 수사 시 비할당 영역에 존재하는 파일 파편의 분석 기술에 대해 서술한다.
이 연구에서는 2019년 10월 현재 우리나라에 개설된 데이터과학 교육과정의 현황을 분석하기 위해 먼저, 데이터과학 분야의 교육과정을 분석한 기존 연구와 데이터과학 분야 전문가에게 요구되는 역량에 대한 분석을 진행하였고, 이를 바탕으로 우리나라에 개설된 80개의 교육과정과 2,041개의 교과목을 대상으로 학문 영역 특징 기반 분석, 데이터 전문가 역량 기반 분석과 교과목명 내용 분석을 실시하였다. 분석 결과, 우리나라에서의 데이터과학 전공 교육은 기술과 직업 실무적 관점보다는 학문적 접근을 바탕으로 한 연구 중심의 전문적 교육과정으로 자리 잡았으며, 통계적 분석 역량을 중심으로 많은 교과가 개설되었고, 정보기술, 통계학, 경영학을 중심으로 한 학제적 특성이 교육과정에 반영되었음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.