• Title/Summary/Keyword: Darcy-Weisbach formula

Search Result 3, Processing Time 0.016 seconds

Numerical Solution of Colebrook-White Equation and It's Application (콜부르크-화이트 방정식의 수치해와 이의 적용)

  • Kim, Minhwan;Song, Changsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.613-618
    • /
    • 2005
  • In analysis of pipelines or pipe network we calculated the friction loss using Hazen-Williams or Manning formula approximately, or found one by friction coefficient from Moody diagram graphically. The friction coefficient is determined as a function of relative roughness and Reynolds number. But the calculated friction coefficient by Hazen-Williams or Manning formula considered roughness of pipe or velocity of flow. The friction coefficient in Darcy-Weisbach equation was obtained from the Moody diagram. This method is manual and is not exact from reading. This paper is presented numerical solution of Colebrook-White formula including variables of relative roughness and Reynolds number. The suggested subroutine program by an efficient linear iteration scheme can be applied to any pipe network system.

Derivation of the Risk-Safety Factor Relation for Optimal Storm Sewer Design in Urban Area (도시지역의 최적 배수관망 설계를 위한 Risk Safety Factor 관계의 설정)

  • Kim, Mun Mo;Lee, Won Hwan;Cho, Won Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.129-134
    • /
    • 1992
  • This paper presents the relation between risk and safety factor for optimal storm sewer design in urban area. For reliability analysis of the storm sewer, uncertainty of the various parameters of constituting equation determining the capacity and load of storm" sewer is considered and risk is determined. In this study, reliability analysis method is applied to Seongsan detention reservoir basin which area is $381,000m^2$ Darcy-Weisbach equation is used for determining capacity of the storm sewer and rational formula is used for determining load. Safety factor representing ratio of the sewer capacity and design flowrate is calculated, and relating with risk. Then risk and safety factor with return period is obtained and it is used for optimal design of storm sewer.

  • PDF

Reliability Analysis of Storm Sewer System by AFOSM Method (AFOSM 방법에 의한 하수관망의 신뢰성 분석)

  • Kim, Mun Mo;Lee, Won Hwan;Cho, Won Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.201-209
    • /
    • 1993
  • The purpose of this study is to analyze the reliability of storm sewer system and AFOSM method is applied on Sinjeong detention basin area to decide the applicability of AFOSM method. The Rackwitz Algorithm, which is suitable for minimizing the error due to non-linearity, is used to find the failiure point. The performance functions are established to calculate the risk, rational formula is used to determine the load and Manning equation and Darcy-Weisbach equation are used to determine the sewer capacity, and the results are 0.119, 0.127, respectively. The Risk-Safety Factor relation for each return period is derived and the designing of storm sewer system based on reliability analysis is enabled.

  • PDF