• 제목/요약/키워드: Darcy의 법칙

검색결과 45건 처리시간 0.022초

유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1) (Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1))

  • 박정욱;박의섭;김태현;이창수;이재원
    • 터널과지하공간
    • /
    • 제28권5호
    • /
    • pp.400-425
    • /
    • 2018
  • 본 논문에서는 국제공동연구인 DECOVALEX-2019 프로젝트 Task B의 연구결과와 현황을 소개하였다. Task B의 주제는 'Fault slip modelling'으로 유체의 주입으로 인해 발생하는 단층의 재활성(미끄러짐, 전단파괴)과 수리역학적 거동을 예측할 수 있는 해석기법을 개발하는 데에 그 목적이 있다. 1단계 연구는 참가팀들이 연구주제에 대해 숙지하고, 벤치마크 모델을 대상으로 단층의 투수특성과 역학적 거동의 상호작용을 모사할 수 있는 해석코드를 개발할 수 있도록 하는 준비 단계의 연구이다. 본 연구에서는 TOUGH-FLAC 연동해석 기법을 사용하여 물 주입으로 인한 단층의 수리역학적 연계거동을 모사하였다. TOUGH2 해석에서는 단층을 Darcy의 법칙과 삼승법칙을 따르는 연속체 요소로 모델링하였으며, FLAC3D 해석에서는 미끄러짐과 개폐가 허용되는 불연속 인터페이스 요소를 통해 모사하였다. 두 가지 수리간극모델에 대하여 수리역학적 커플링 관계식을 수치화하였으며, 연속체 요소(수리모델)와 인터페이스 요소(역학모델)의 거동을 연계할 수 있는 해석기법을 제시하였다. 또한, 단층의 역학적 변형(간극의 변화)으로 인한 수리물성 변화와 기하학적 변화(해석 메쉬의 변형)를 수리해석에 반영할 수 있는 해석기법을 개발하였다. 다양한 압력의 물을 단계적으로 주입하고 이로 인해 유도되는 단층의 탄성거동 및 전단파괴(미끄러짐)에 대해 살펴보았으며, 수리간극의 변화 양상과 원인, 압력 분포와 주입율의 관계 등을 면밀히 검토하였다. 해석 결과, 본 연구에서 개발한 해석기법이 물 주입으로 인한 단층의 미끄러짐 거동을 합리적인 수준에서 재현할 수 있는 것으로 판단할 수 있었다. 본 연구의 해석모델은 Task B에 참여하는 국외 연구팀들과의 의견 교류와 워크숍을 통해 지속적으로 개선하는 한편, 향후 연구의 현장시험에 적용하여 타당성을 검증할 예정이다.

흐름과 임의반사율을 갖는 부분중복파와의 공존장하에서 해저지반내 동적응답의 해석해 (An Analytical Solution of Dynamic Responses for Seabed under Coexisting Fields of Flow and Partial Standing Wave with Arbitrary Reflection Ratio)

  • 이광호;김동욱;강기천;김도삼;김태형;나승민
    • 한국지반공학회논문집
    • /
    • 제31권6호
    • /
    • pp.27-44
    • /
    • 2015
  • 일정수심상에서 임의반사율을 갖는 부분중복파와 흐름이 공존하는 경우 얕은 두께를 포함한 유한두께 및 무한두께의 해저지반내에서 동적응답을 나타내는 해석해를 유도한다. 해석해에서 반사율이 0인 경우는 진행파와 흐름과의 공존장으로, 반사율이 1인 경우는 완전중복파와 흐름과의 공존장으로 간단히 변환된다. Biot의 압밀이론에 기초하여 해저지반은 투과탄성매체로, 간극유체는 압축성으로, 그리고 지반내 간극수의 흐름은 Darcy법칙으로 각각 가정된다. 도출된 해석해는 기존의 해석결과와의 비교 검토로부터 검증되며, 실제 계산에서는 반사율, 흐름속도, 입사파의 주기 및 지반두께 등의 변화에 따른 지반변위, 간극수압, 유효응력 및 전단응력의 변동특성을 면밀히 검토한다. 이로부터 흐름이 존재하는 경우 흐름으로 인한 입사파와 반사파의 주기 및 파장의 변화로 인하여 흐름이 없는 경우의 지반내 동적응답과는 큰 차이를 나타내며, 또한 반사율의 크기에 따라 동적응답에서 큰 차이가 나타난다는 것을 확인할 수 있다.

흐름과 완전중복파와의 공존장하에서 해저지반내 동적응답의 해석해 (An Analytical Solution of Dynamic Responses for Seabed under Flow and Standing Wave Coexisting Fields)

  • 이광호;김동욱;김도삼;김태형;김규한;전종혁
    • 한국해안·해양공학회논문집
    • /
    • 제27권2호
    • /
    • pp.118-134
    • /
    • 2015
  • 일정수심상에서 완전중복파와 흐름이 공존하는 경우 얕은 두께를 포함하는 유한두께 및 무한두께의 해저 지반내에서 동적응답을 나타내는 해석해를 유도한다. 이 때, Biot의 압밀이론에 기초하여 해저지반은 투과탄성매체로, 간극유체는 압축성으로, 그리고 지반내 간극수의 흐름은 Darcy법칙으로 각각 가정된다. 도출된 해석해는 기존의 해석결과와의 비교 검토로부터 검증되며, 실제 계산에서는 흐름속도, 입사파의 주기 및 지반두께 등의 변화에 따른 지반변위, 간극수압, 유효응력 및 전단응력의 변동특성을 면밀히 검토한다. 이로부터 흐름이 존재하는 경우 흐름으로 인한 입사파와 반사파의 주기 및 파장의 변화로 인하여 흐름이 없는 경우의 지반응답과는 많은 차이를 나타낸다는 것을 확인할 수 있다.

이산화탄소 지중저장과 원유 회수증진 공정을 위한 저류층 모델링 (Reservoir Modeling for Carbon Dioxide Sequestration and Enhanced Oil Recovery)

  • 김승혁;이종민;윤인섭
    • 한국가스학회지
    • /
    • 제16권3호
    • /
    • pp.35-41
    • /
    • 2012
  • 전 세계적으로 주목받는 탄소 포집 및 저장 기술(CCS)은 현재 많은 연구가 이루어져서 대규모 탄소 포집이 가능한 시점에 있다. 이에 대규모 이산화탄소 포집에 적합한 저장 기술 또한 주목을 받고 있는데, 그 중 하나가 이산화탄소 원유 회수증진 공정($CO_2$-EOR)이다. 이는 이산화탄소의 지중저장은 물론 원유 회수를 증가시키므로, 환경적인 측면과 경제적인 측면을 모두 만족시킬 수 있는 방법이라고 할 수 있다. 본 연구에서는 다공성 매질인 저류층을 통과하는 원유와 이산화탄소 혼합유체의 흐름을 모델링하고, 모델링을 통해 이산화탄소 저장 및 원유 회수 증진의 효과를 보이고자 하였다. 혼합유체를 모델링하기 위해 Darcy-Muskat의 법칙으로부터 확산성, 점도 변화를 추가 고려하여 저류층 내 압력과 포화도를 계산하였고, 수치 해석적 모델링을 위해서 유한체적법(finite volume method)을 이용하였다. 그 결과, 저류층 내 원유와 물, 이산화탄소를 주입했을 경우 각 주입물질별 시간에 따른 압력과 포화도의 변화를 예측할 수 있었고, 이산화탄소 주입 방법이 물을 주입하는 방법보다 원유 회수 측면에서 더 유리한 것을 확인할 수 있었다.

사면(斜面)의 특성(特性)과 홍수도달시간(洪水到達時間)의 분포특성(分布特性)을 고려한 산지소유역(山地小流域)의 유출해석(流出解析) (Runoff Analysis Considering the Distribution of Concentration Time and Slope Length for the Mountainous Small Watershed)

  • 이원환;조홍제
    • 대한토목학회논문집
    • /
    • 제3권4호
    • /
    • pp.59-70
    • /
    • 1983
  • 침투효과가 큰 산지소유역(山地小流域)은 사면유(斜面流)가 주(主)된 흐름이 된다. 유역전체의 물리적(物理的) 특성(特性)이 일정(一定)한 사면(斜面)에서의 흐름을 Darcy 법칙(法則)이 성립(成立)되는 포화침투류(중간유(中間流))로 가정하여, 기본이론식을 Kinematic Wave Theory로서 강우(降雨)-유출(流出)에 대한 응답함수를 구성(構成)하였다. 사면(斜面)길이의 확률분포와 홍수도달시간(洪水到達時間)의 확률분포를 비교해 본 결과 양자의 Shape Parameter가 거의 일치하였다. 이는 사면(斜面)의 특성(特性)이 도달시간(到達時間)으로 집약되어 나타나는 것을 의미하며, 사면(斜面)의 특성치로서 유출인자의 특성(特性)을 구할 수 있음을 나타낸다. 분석방법으로 유도된 응답함수에 대한 관측치의 적용성을 최적해법으로 검토하였다. 분석결과 본 이론의 방법은 관측이 적은 지점이나 미계측 지점의 유출해석을 위해 중요한 수단을 제공할 것으로 판단되었고, 앞으로 강우파형과 지형인자와의 유기적 관계를 분석함으로써 관측이 미비한 지점의 유출해석을 합리적으로 수행할 수 있을 것으로 생각되며, 이것은 다음의 연구과제이다.

  • PDF