• Title/Summary/Keyword: Damping simulation

Search Result 746, Processing Time 0.028 seconds

Structural Dynamics Modification of Damped Systems via Sensitivity Analysis (민감도 해석에 의한 감쇠계의 구조변경)

  • 차현주;도원주;이시복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.224-230
    • /
    • 1996
  • In the mechanical systems with large damping, the conventional SDM method developed for no damping systems will lead to an error solution. Here, we introduce a SDM method based on the experimental modal model for large damping systems. The sensitivities of natural frequencies and mode shapes with respect to mass, damping, and stiffness coefficients of structures are used to calculate the position and quantity of modification, and predict the new dynamic characteristics. Through numerical simulation and experiment, the effectiveness of the proposed method is tested.

  • PDF

The study on the semi-active suspension system for bicycle (자전거용 반능동 현가기구 개발에 관한 연구)

  • Ju, Hyung-Jun;Kin, Chan-Jung;Lee, Dong-Won;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.775-780
    • /
    • 2011
  • This paper represents the study on the development of semi-active bicycle suspension system. The road vibration and transmissibility of front suspension are obtained by driving test on proving ground. The numerical simulation is evaluated by dynamic system modeling and equation of motion. The numerical simulation are performed to estimate the optimal damping force for minimal vibration transmission. And oscillating displacement is calculated and analyzed. Therefore the stoke which convert the damping characteristics is suggested from the driving test and numerical simulation.

  • PDF

A New Approach to Adaptive Damping Control for Statistic VAR Compensators Based on Fuzzy Logic

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.825-829
    • /
    • 2005
  • This paper presents an approach for designing a fuzzy logic-based adaptive SVC damping In controller for damping low frequency power oscillations. Power systems are often subject to low Frequency electro-mechanical oscillations resulting from electrical disturbances. Generally, power system stabilizers are designed to provide damping against this kind of oscillations. Another means to achieve damping is to design supplementary damping controllers that are equipped with SVC. Various approaches are available for designing such controllers, many of which are based on the concepts of damping torque and others which treat the damping controller design as a generic control problem and apply various control theories on it. In our proposed approach, linear optimal controllers are designed and then a fuzzy logic tuning mechanism is constructed to generate a single control signal. The controller uses the system operating condition and a fuzzy logic signal tuner to blend the control signals generated by two linear controllers, which are designed using an optimal control method. First, we design damping controllers for the two extreme conditions; the control action for intermediate conditions is determined by the fuzzy logic tuner. The more the operating condition belongs to one of the two fuzzy sets, the stronger the contribution of the control signal from that set in the output signal. Simulation studies done on a one-machine infinite-bus and a four-machine two-area test system, show that the proposed fuzzy adaptive damping SVC controller effectively enhances the damping of low frequency oscillations.

  • PDF

Estimation of Dynamic Properties of Steel Liquid Storage Tank by Shaking Table Test (진동대 실험에 의한 강재 액체저장탱크의 동특성 분석)

  • Choi, Hyoung Suk;Park, Dong Uk;Kim, Sung Wan;Kim, Jae Min;Baek, Eun Rim
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.153-161
    • /
    • 2017
  • Liquid storage tank is one of the major infrastructures and generally used to store gases, drinking and utilizing water, dangerous fluids, fire water and so on. According to the recent reports and experiences, the tank structures are damaged in many earthquakes due to their low energy dissipating capacity. Therefore, many researchers have been tried to know the dynamic properties of the tanks including liquids. However, vary limited experimental studies are carried out using relatively small tank models. In this study, a series of shaking table tests are performed with maximum 2 m cubic rectangular liquid storage tanks made of steel to measure the natural frequency and estimate damping coefficient of impulsive and convective mode of the tanks. Especially, the damping values under different shapes and excitation methods are estimated by logarithmic decrement method and half power band-pass method and compared with current design code and standards such as ASCE 7, Eurocode 8 and NZS. Test results show that the impulsive mode damping is around 2% which is proposed by general standards and codes but the impulsive mode damping is 0.13% average that is slightly lower than the code recommendation.

Experimental Study of the Dynamic Characteristics of Rubber Mounts for Agricultural Tractor Cabin

  • Choi, Kyujeong;Oh, Jooseon;Ahn, Davin;Park, Young-Jun;Park, Sung-Un;Kim, Heung-Sub
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.255-262
    • /
    • 2018
  • Purpose: To obtain the dynamic characteristics (spring stiffness and damping coefficient) of a rubber mount supporting a tractor cabin in order to develop a simulation model of an agricultural tractor. Methods: The KS M 6604 rubber mount test method was used to test the dynamic characteristics of the rubber mount. Of the methods proposed in the standard, the resonance method was used. To perform the test according to the standard, a base excitation test device was constructed and the accelerations were measured. Results: Displacement transmissibility was measured by varying the frequency from 3-30 Hz. The vibration transmissibility at resonance was confirmed, and the dynamic stiffness and damping coefficient of the rubber mount were obtained. The front rubber mount has a spring constant of 1247 N/mm and damping ratio of 3.27 Ns/mm, and the rear rubber mount has a spring constant of 702 N/mm and damping ratio of 1.92 Ns/mm. Conclusions: The parameters in the z-direction were obtained in this study. In future studies, we will develop a more complete tractor simulation model if the parameters for the x- and y-directions can be obtained.

Numerical Investigation of Motion Response of the Tanker at Varying Vertical Center of Gravities

  • Van Thuan Mai;Thi Loan Mai;Hyeon Kyu Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • The vertical center of gravity (VCG) has a significant impact on the roll motion response of a surface ship, particularly oil tankers based on the oil level in the tanker after discharging oil at several stations or positional changes, such as changes in the superstructure and deck structure. This study examined the motion response of the Korea very large crude carrier 2 (KVLCC2) at various VCGs, especially roll motion when the VCG changed. The potential theory in the Ansys AQWA program was used as a numerical simulation method to calculate the motion response. On the other hand, the calculations obtained through potential theory overestimated the roll amplitudes during resonance and lacked precision. Therefore, roll damping is a necessary parameter that accounts for the viscosity effect by performing an experimental roll decay. The roll decay test estimated the roll damping coefficients for various VCGs using Froude's method. The motion response of the ship in regular waves was evaluated for various VCGs using the estimated roll-damping coefficients. In addition, the reliability of the numerical simulation in motion response was verified with those of the experiment method reported elsewhere. The simulation results showed that the responses of the surge, sway, heave, pitch, and yaw motion were not affected by changing the VCG, but the natural frequency and magnitude of the peak value of the roll motion response varied with the VCG.

Transverse Vibration Analysis of the Deploying Beam by Simulation and Experiment (시뮬레이션과 실험을 통한 전개하는 보의 횡 방향 진동 분석)

  • Kim, Jaewon;Zhu, Kefei;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.866-873
    • /
    • 2015
  • The transverse vibration of the deploying beam from rigid hub was analyzed by simulation and experiment. The linear governing equation of the deploying beam was obtained using the Euler-Bernoulli beam theory. To discretize the governing equation, the Galerkin method was used. After transforming the governing equation into the weak form, the weak form was discretized. The discretized equation was expressed by the matrix-vector form, and then the Newmark method was applied to simulate. To consider the damping effect of the beam, we conducted the modal test with various beam length. The mass proportional damping was selected by the relation of the first and second damping ratio. The proportional damping coefficient was calculated using the acquired natural frequency and damping ratio through the modal test. The experiment was set up to measure the transverse vibration of the deploying beam. The fixed beam at the carriage of the linear actuator was moved by moving the carriage. The transverse vibration of the deploying beam was observed by the Eulerian description near the hub. The deploying or retraction motion of the beam had the constant velocity and the velocity profile with acceleration and deceleration. We compared the transverse vibration results by the simulation and experiment. The observed response by the Eulerian description were analyzed.

A study on development of hydraulic active suspension system (유압식 능동 현가시스템의 개발에 관한 연구)

  • 장성욱;박성환;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1459-1464
    • /
    • 1996
  • The most important parameter for hydraulic active suspension system is to sustain desirable vehicle maneuvering stability and ride comfort without increasing consumption power. The performance of hydraulic active suspension system depends on damping force of body damping valve and piston damping valve. Hydraulic actuator design and damping valve parameter selection are essential and basic procedure to design hydraulic active suspension system. This paper is on computer simulation with use of mathematical model that was delivered from dynamic characteristic of hydraulic actuator, as know basic damping characteristics of hydraulic active suspension system. The aim of this paper is to select the system parameter that affect mainly hydraulic active suspension, and identify the validity on the system parameter selection.

  • PDF

Power System Oscillations Damping Using UPFC Based on an Improved PSO and Genetic Algorithm

  • Babaei, Ebrahim;Bolhasan, Amin Mokari;Sadeghi, Meisam;Khani, Saeid
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.135-142
    • /
    • 2012
  • In this paper, optimal selection of the unified power flow controller (UPFC) damping controller parameters in order to improve the power system dynamic response and its stability based on two modified intelligent algorithms have been proposed. These algorithms are based on a modified intelligent particle swarm optimization (PSO) and continuous genetic algorithm (GA). After extraction of UPFC dynamic model, intelligent PSO and genetic algorithms are used to select the effective feedback signal of the damping controller; then, to compare the performance of the proposed UPFC controller in damping the critical modes of a single-machine infinite-bus (SMIB) power system, the simulation results are presented. The comparison shows the good performance of both presented PSO and genetic algorithms in an optimal selection of UPFC damping controller parameters and damping oscillations.

A Study on the Application and Design of Hydraulic Active Suspension System (유압식 능동 현가시스템의 설계 및 적용에 관한 연구)

  • Jang, Seong-Uk;Lee, Jin-Geol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.683-692
    • /
    • 2002
  • The most important parameter for hydraulic active suspension system is to sustain desirable vehicle maneuvering stability and ride comfort without increasing power consumption. The performance of hydraulic active suspension system depends on damping force of body damping valve and piston damping valve. Hydraulic actuator design and damping valve parameter selection are essential and basic procedure to design hydraulic system. This paper is on computer simulation with use of mathematical model that was delivered from dynamic characteristic of hydraulic actuator, as know basic damping characteristics of hydraulic active suspension system. The aim of this paper is to select the system parameter that affect mainly hydraulic active suspension, and identify the validity on the system parameter selection.