• Title/Summary/Keyword: Damping loss factor

Search Result 125, Processing Time 0.023 seconds

Calculation of Coupling Loss Factor for Small reverberation cabin using Statistical Energy Analysis (통계적 에너지 해석법을 이용한 소형 잔향실의 연성손실계수 측정)

  • 김관주;김운경;윤태중;김정태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.797-801
    • /
    • 2003
  • The Statistical Energy Analysis is based on the power flow and the energy conservation between sub-systems, which enable the prediction of acoustic and structural vibration behavior in mid-high frequency ranges. This paper discusses the identification of SEA coupling loss factor parameters from experimental measurements of small reverberation chamber sound pressure levels and structural accelerations. As structural subsystems, steel plates with and without damping treatment are considered. Calculated CLFs were verified by both transmission loss values for air-borne CLF case and running SEA commercial software As a result, CLFs have shown a good agreement with those computed by software. Acoustical behavior of air-borne noise and structure-borne noise has been examined. which shows reasonable results, too.

  • PDF

Test method comparison for vibration-damping of materials (물질의 진동감쇠 시험법 비교)

  • 신수현;이용봉;정성수;조승일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.700-703
    • /
    • 2003
  • The test method of ASTM E 756 and KS D 0076 to estimate vibration-damping properties is compared. Comparison method depending on specimen support, exciting method and calculation method for loss factor is used. Half-power bandwidth method and vibration decay method is used in the calculation method for loss factor, and Young's modulus is decided by geometric character and density for specimen and resonance frequency. Vibration measurement sensor is compared by using non-contact displacement detector, velocity detector and accelerometer. This paper is also presented the matter which is able to cause error in the measurement

  • PDF

Estimation of Vibration-damping Properties for Steel Beam (Steel beam의 진동감쇠 특성평가)

  • Shin, Su-Hyun;Nam, Hyo-Duk;Jung, Sung-Soo;Lee, Young-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.439-442
    • /
    • 2003
  • The test method of ASTM E 756 and JIS G 0602 to estimate vibration-damping properties is presented. Measurement method depending on specimen support, exciting method and calculation method for loss factor is used. Half-power bandwidth method and vibration decay method is used in the calculation method for loss factor, and Young's modulus is decided by geometric character and density for specimen and resonance frequency. Vibration measurement sensor is compared by using non-contact displacement detector, velocity detector and accelerometer. The cause of measurement error is also presented.

  • PDF

Acoustic Study of light weight insulation system on Dash using SEA technique (SEA 기법을 이용한 저중량 대시판넬 흡,차음재 성능에 대한 연구)

  • Lim, Hyo-Suk;Park, Kwang-Seo;Kim, Young-Ho;Kim, In-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.51-55
    • /
    • 2007
  • In this paper Statistical Energy Analysis has been considered to predict high frequency air borne interior noise. Dash panel Insulation is major part to reduce engine excitation noise. Transmission loss and absorption coefficient are considered to predict dash insulation performance. Transmission lose is derived from coupling loss factor and absorption coefficient is derived from internal damping loss factor. Material Biot properties were used to calculate each loss factors. Insulation geometry thickness distribution was hard to measure, so FeGate software was used to calculate thickness map from CAD drawing. Each predicted transmission losses between conventional insulation and light weight insulation were compared with SEA. Transmission loss measurement was performed to validate each prediction result, and it showed good correlation between prediction and measurement. Finally interior noise prediction was performed and result showed light weight insulation system can reduce 40% weight to keep similar performance with conventional insulation system, even though light weigh insulation system has lower sound transmission loss and higher absorption coefficient than conventional system.

  • PDF

An Experimental Study on Placements and Thickness of Damping Material for Vibration Control of Automotive Roof (자동차 루프의 진동제어를 위한 제진재의 위치 및 두께에 대한 실험적 연구)

  • Lee, Jeong-Kyun;Kim, Chan-Mook;Sa, Jong-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.31-37
    • /
    • 2005
  • This paper presents an experimental study on vibration characteristics of an automotive roof with damping material. The goal of the study is to extract modal parameters(natural frequency, loss factor, and mode shape) of automotive roof with damping materials treatment. To determine the effective positions and thickness of the damping material on a roof, vibration tests have been carried out for six cases; an aluminum plate with damping material on maximum strain energy positions, and an aluminum plate with damping material on nodal lines. From the result of aluminum plate, it is found that the damping material should be placed on the location with maximum strain energy part. For the automotive roof, patches of constrained damping material, which has two different density, have been attached to the positions of the maximum strain energy with four kinds of thicknesses. This paper shows that the proper positioning of the damping material is very important and the effective thickness is about twice that of the roof panel.

Finite element vibration and damping analysis of a partially covered cantilever beam

  • Yaman, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.141-151
    • /
    • 2005
  • There are several ways of decreasing the vibration energy of structures. One of which is special damping layers made of various viscoelastic materials are widely applied in structures subjected to dynamic loading. In this study, a cantilever beam, partially covered by damping a constraining layers, is investigated by using Finite Element method (FEM). The frequency and system loss factor are evaluated. The effects of different physical and geometrical parameters on the natural frequency and system loss factors are discussed.

An Experimental Study on the Measurement of Elastic and Damping Coefficients of a Composite Material (복합재의 탄성 및 감쇠계수 측정을 위한 실험연구)

  • Park, Han-Il;Shon, Jae-Geon;Min, Cheon-Hong;Bae, Soo-Ryong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.26-31
    • /
    • 2007
  • Understanding viscoelastic properties of composite materials is essential for the design and analysis of composite structures. Specially, the loss factor and Young's modulus must be known to develop finite element codes for a composite structure with several damping materials. In this study, an advanced technique for obtaining accurate loss factor and Young's modulus of a composite structure is introduced based on the method of American Society for Testing and Materials (ASTM). The loss factor and Young's modulus of a composite structure are measured for different temperatures by performing the test in a vibration measurement room where temperature can be controllable from 5 to 45 Celsius.

Analysis of the Vibration Damping of a Single Lap Joint Beam with Partial Dampers (겹침이음부와 부분층댐퍼가 부착된 보의 진동감쇠해석)

  • 박정일;최낙삼
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.26-35
    • /
    • 1999
  • This paper presents the vibration damping characteristic of a single lap joint beam with partial dampers analyzed using the model strain energy method and the harmonic response analysis which were based on a finite element model. The two finite element analysis methods exhibited very similar results of the resonant frequency and system loss factor which were comparable to those by the theoretical analysis. Effects of the location of partial dampers and elastic moduli and thickness of their layers on the system loss factor were studied. The damping effects due to changes of modules and loss factor of the viscoelastic layer in lap joint and partial dampers were also studied. Consequently, the geometrical and material conditions at maximizing the system loss factor were suggested.

  • PDF

A Method to Determine Optimum Viscoelastic Layer Thickness of Sandwich Plate for Maximum Modal Damping (샌드위치 평판의 모드 감쇠 최대화를 위한 점탄성층 두께 결정법)

  • Nam, Dae-Ho;Shin, Yun-Ho;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.690-696
    • /
    • 2006
  • Thickness of damping layer in sandwich plate needs to be optimized in order to make modal loss factor of the sandwich plate maximum. Since previous studies were interested in noise reductions over high frequency range, the modal properties were derived based on simply supported boundaries. This conventional formula is approximately applicable to other boundary conditions over high frequency range only. The purpose of this study is to propose a method to determine optimum damping layer thickness of sandwich plate for maximum modal damping in low frequency range when the boundary condition is not a simple support. The conventional RKU equation based on simply supported boundary is modified to reflect other boundary conditions and the modified RKU equation is subsequently applied to determine the optimum damping layer thickness for arbitrary conditions. In order to reflect frequency-dependent characteristics of elastic modulus of the damping layer, an iteration method is proposed in determining the modal properties. Test results on sandwich plates for optimum damping layer thickness are compared with predictions by the proposed method and conventional method.

Modelling of the interfacial damping due to nanotube agglomerations in nanocomposites

  • Jarali, Chetan S.;Madhusudan, M.;Vidyashankar, S.;Lu, Y. Charles
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.57-66
    • /
    • 2017
  • Nanocomposites reinforced with carbon nanotube fibers exhibit greater stiffness, strength and damping properties in comparison to conventional composites reinforced with carbon/glass fibers. Consequently, most of the nanocomposite research is focused in understanding the dynamic characteristics, which are highly useful in applications such as vibration control and energy harvesting. It has been observed that those nanocomposites show better stiffness when the geometry of nanotubes is straight as compared to curvilinear although nanotube agglomeration may exist. In this work the damping behavior of the nanocomposite is characterized in terms of loss factor under the presence of nanotube agglomerations. A micro stick-slip damping model is used to compute the damping properties of the nanocomposites with multiwall carbon nanotubes. The present formulation considers the slippage between the interface of the matrix and the nanotubes as well as the slippage between the interlayers in the nanotubes. The nanotube agglomerations model is also presented. Results are computed based on the loss factor expressed in terms of strain amplitude and nanotube agglomerations. The results show that although-among the various factors such as the material properties (moduli of nanotubes and polymer matrix) and the geometric properties (number of nanotubes, volume fraction of nanotubes, and critical interfacial shear stresses), the agglomeration of nanotubes significantly influences the damping properties of the nanocomposites. Therefore the full potential of nanocomposites to be used for damping applications needs to be analyzed under the influence of nanotube agglomerations.