• Title/Summary/Keyword: Damping Layer

Search Result 266, Processing Time 0.023 seconds

Vibration Analysis of the Active Multi-Layer Beams by Using Spectrally Formulated Exact Natural Modes

  • Lee, Usik;Kim, Joohong;Andrew Y. T. Leung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.199-209
    • /
    • 2001
  • Modal analysis method (MAM) is introduced for the fully coupled structural dynamic problems. In this paper, the beam with active constrained layered damping (ACLD) treatment is considered as a representative problem. The ACLD beam consists of a viscoelastic layer that is sandwiched between the base beam structure and an active piezoelectric layer. The exact damped natural modes are spectrally formulated from a set of fully coupled dynamic equations of motion. The orthogonality property of the exact damped natural modes is then derived in a closed form to complete the modal analysis method. The accuracy of the present MAM is evaluated through some illustrative examples: the dynamic characteristics obtained by the present MAM are compared with the results by spectral element method (SEM) and finite element method (FEM). It is numerically proved that MAM solutions become identical to the accurate SEM solutions as the number of exact natural used in MAM is increased.

  • PDF

Flexural Vibration Analysis of a Sandwich Beam Specimen with a Partially Inserted Viscoelastic Layer

  • Park, Jin-Tack;Park, Nak-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.347-356
    • /
    • 2004
  • The flexural vibration characteristics of a sandwich beam system with a partially inserted viscoelastic layer were quantitatively studied using the finite element analysis in combination with the sine-sweep experiment. Asymmetric mode shapes of the flexural vibration were visualized by holographic interferometry, which agreed with those obtained by the finite element simulation. Effects of the length and the thickness of the partial viscoelastic layer on the system loss factor (η$\_$s/) and resonant frequency (f$\_$r/) were significantly large for both the symmetric and asymmetric modes of the beam system.

The Influence of Design Factors of Sonar Acoustic Window on Transfer Function of Self Noise due to Turbulent Boundary Layer (소나 음향창의 설계 인자가 난류 유동 유기 자체 소음의 전달 함수에 미치는 영향 해석)

  • Shin, Ku-kyun;Seo, Youngsoo;Kang, Myengwhan;Jeon, Jaejin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.568-574
    • /
    • 2012
  • Turbulent boundary layer noise is already a significant contributor to sonar self noise. For developing acoustic window of sonar system to reduce self noise, a parametric study of design factors of acoustic window is presented. Distance of sensor array from acoustic window, material and damping layer are studied as design factors to influence in the characteristics of the transfer function of self noise. As the result these design factors make change the characteristics of transfer function slightly. Among design factors the location of sensor array is most important parameter in the self noise reduction.

  • PDF

Spectral Element Analysis of a PCLD beam (수동적층보의 스펙트럴요소 해석)

  • You, Sung-Jun;Lee, U-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.619-624
    • /
    • 2007
  • Spectral element method (SEM) is introduced for the fully coupled structural dynamic problems, In this paper, the beam with passive constrained layered damping (PCLD) treatments is considered as a representative problems. The beam consists of a viscoelastic layer that is sandwiched between the base beam structure and an elastic layer, The fully coupled equations of motion for a PCLD beam are derived, The equations of motion are derived first by using Hamilton's principle, From this equations of motion, the spectral element is formulated for the vibration analysis by use of the SEM, As an illustrative example, a cantilevered beam is considered. It is shown that, as the thickness of VEM layer vanishes, the results become a simple layer beam's that.

  • PDF

Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics

  • Zou, Chang-Fang;Wang, De-Yu;Cai, Zhong-Hua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.670-690
    • /
    • 2015
  • In this paper, numerical investigations for tank sloshing, based on commercial CFD package FLUENT, are performed to study effects of boundary layer grid, liquid viscosity and compressible air on sloshing pressure, wave height and rising time of impact pressure. Also, sloshing experiments for liquids of different viscosity are carried out to validate the numerical results. Through comparison of numerical and experimental results, a computational model including boundary layer grid can predict the sloshing pressure more accurately. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and wave elevation. Sloshing pressure is also reduced because of cushion effect of compressible air. Due to high viscosity damping effect and compressible air effect, the rising time of impact pressure becomes longer. It is also found that liquid viscosity and compressible air influence distribution of dynamic pressure along the vertical tank wall.

Wave propagation in unbounded elastic domains using the spectral element method: formulation

  • Meza Fajardo, Kristel C.;Papageorgiou, Apostolos S.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.383-411
    • /
    • 2012
  • The objective of the present paper is to review and implement the most recent developments in the Spectral Element Method (SEM), as well as improve aspects of its implementation in the study of wave propagation by numerical simulation in elastic unbounded domains. The classical formulation of the method is reviewed, and the construction of the mass matrix, stiffness matrix and the external force vector is expressed in terms of matrix operations that are familiar to earthquake engineers. To account for the radiation condition at the external boundaries of the domain, a new absorbing boundary condition, based on the Perfectly Matched Layer (PML) is proposed and implemented. The new formulation, referred to as the Multi-Axial Perfectly Matched Layer (M-PML), results from generalizing the classical Perfectly Matched Layer to a medium in which damping profiles are specified in more than one direction.

Optimum thickness of GaAs top layer in AlGaAs-based 850 nm VCSELs for 56 Gb/s PAM-4 applications

  • Yu, Shin-Wook;Kim, Sang-Bae
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.923-931
    • /
    • 2021
  • We studied the influence of GaAs top-layer thickness on the small-signal modulation response and 56 Gb/s four-level pulse-amplitude modulation eye quality of 850 nm vertical-cavity surface-emitting lasers (VCSELs). We considered the proportionality of the gain-saturation coefficient to the photon lifetime. The simulation results that employed the transfer-matrix method and laser rate equations led to the conclusion that the proportionality should be considered for proper explanation of the experimental results. From the obtained optical eyes, we could determine an optimum thickness of the GaAs top layer that rendered the best eye quality of VCSEL. We also compared two results: one result with a fixed gain-saturation coefficient and the other that considered the proportionality. The former result with the constant gain-saturation coefficient demonstrated a better eye quality and a wider optimum range of the GaAs top-layer thickness because the resultant higher damping reduced the relaxation oscillation.

Identification and suppression of vibrational energy in stiffened plates with cutouts based on visualization techniques

  • Li, Kai;Li, Sheng;Zhao, De-You
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.395-410
    • /
    • 2012
  • The visualizing energy flow and control in vibrating stiffened plates with a cutout are studied using finite element method. The vibration intensity, vibration energy and strain energy distribution of stiffened plates with cutout at different excitation frequencies are calculated respectively and visualized for the various cases. The cases of different size and boundaries conditions of cutouts are also investigated. It is found that the cutout or opening completely changes the paths and distributions of the energy flow in stiffened plate. The magnitude of energy flow is significantly larger at the edges near the cutout boundary. The position of maximum strain energy distribution is not corresponding to the position of maximum vibrational energy. Furthermore, the energy-based control using constrained damping layer (CDL) for vibration suppression is also analyzed. According to the energy distribution maps, the CDL patches are applied to the locations that have higher energy distribution at the targeted mode of vibration. The energy-based CDL treatments have produced significant attenuation of the vibration energy and strain energy. The present energy visualization technique and energy-based CDL treatments can be extended to the vibration control of vehicles structures.

Vibration Analysis of Three Layer Sandwich Beam (3층 샌드위치보의 진동해석)

  • 박철휴;김원철;양보석
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.157-170
    • /
    • 1998
  • This paper proposes a new technique to formulate the finite element model of a sandwich beam by using GHM (Golla-Hughes-McTavish) internal auxiliary coordinates to account for frequency dependence. Through the use of auxiliary coordinates, the equation of motion of undamped mass and stiffness matrix form is extended to encompass viscoelastic damping matrix. However, this methods all suffer from an increase in order of the final finite element model which is undesirable in many applications. Here we propose to combine the GHM method with model reduction techniques to remove the objection of increased model order.

  • PDF

Vibration and damping characteristics of the masonry wall strengthened with bonded fibre composite patch with viscoelastic adhesive layer

  • Laib, Salaheddine;Meftah, Sid Ahmed;Youzera, Hadj;Ziane, Noureddine;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.253-268
    • /
    • 2021
  • The present paper treats the free vibration problem of the masonry wall strengthened with thin composite plate by viscoelastic adhesive layer. For this goal two steps are considered in the analytical solution. In the first one, an efficient homogenisation procedure is given to provide the anisotropic properties of the masonry wall. The second one is dedicated to purpose simplified mathematical models related to both in-plane and out-of-plane vibration problems. In these models, the higher order shear theories (HSDT's) are employed for a more rigours description of the shear deformation trough the masonry wall and the composite sheet. Ritz's method is deployed as solution strategy in order to get the natural frequencies and their corresponding loss factors. The obtained results are validated with the finite element method (FEM) and then, a parametric study is undertaken for different kinds of masonry walls strengthened with composite sheets.