• Title/Summary/Keyword: Damping Force Control

Search Result 312, Processing Time 0.027 seconds

A Study of Electrical Control Kit for Damping Force of Automotive Shock Absorber (자동차 충격흡수장치용 감쇠력 조정 전자제어장치 연구)

  • Sohn, Il-Seon;Lee, Jeong-Goo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • The performance of shock absorber is directly related to the car behavior and performance, both for handling and comfort. Most of compact car are assembled the passive shock absorber for cost effect but some of compact driver want better performance of shock absorber than standard parts. Therefore, they want the semi-active suspension control system instead of standard damper system. But they only can change the mechanical damping control shock absorber at A/S market. The mechanical damping control shack absorber can not vary the damping force in driving condition so they do not satisfy the mechanical damping control shock absorber system. In this study, electrically damping force controlled shock absorber system is developed based on the mechanical damping force control damper system. This system can vary damping force by switch on dashboard in driving condition. And, this system can satisfy the requirement of tuning market. Therefore, it is expected the system to show the engineering capability of korean damper company and to increase export market share to oversea damper market.

Control of Damping Coefficients for the Shear Mode MR Dampers Using Inverse Model (역모델을 이용한 MR 댐퍼의 감쇠계수 제어)

  • Na, Uhn Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.445-455
    • /
    • 2013
  • A new linearization model for MR dampers is analyzed. The nonlinear hysteretic damping force model of MR damper can be modeled as a hyperbolic tangent function of currents, positions, and velicities, which is an algebraic function with constant parameters. Model parameters can be identified with numerical method using experimental force-velocity-position data obtained from various operating conditions. The nonlinear hysteretic damping force can be linearized with a given slope of damping coefficient if there exist corresponding currents to compensate for the nonlinearity. The corresponding currents can be calculated from the inverse model when the given linear damping force is set equal to the nonlinear hysteretic damping force. The linearization controller is realized in a DSP controller such that the corresponding currents to satisfy a given damping coefficient should be calculated. Experiments show that the current inputs to the MR damper produce linearized damping force with a given slope of the damping coefficient.

A Study on the Characteristics of Damping Force in a Hydraulic Actuator for Vehicle Active Suspension System (차량 능동 현가 장치용 유압 액추에이터의 감쇠력 특성에 관한 연구)

  • 윤영환;최명진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.150-158
    • /
    • 2002
  • Through experimental works, the damping force vibration problem was investigated, which results from valve and surge pressure in the oil return line of the hydraulic circuit of an active suspension system in a passenger cu. Experiments were carried out under passive system, where an orifice valve was closed and non-active system, where an orifice valve was opened, using a pressure control valve controlled by solenoid. The effects of parameters of the valve overlap and accumulator on smoothing surge pressure was elucidated. It was proved that the apparent variation of damping force due to the overlap amount of pressure control valve is the most important factor to control the damping force variation. The procedure of the experimental works shows the development process of a proportional pressure control valve in the hydraulics system of an active suspension system of passenger car.

Modeling and experiment for the force/impact control via passive hardware damper

  • Oh, Y.H.;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.172-178
    • /
    • 1993
  • This paper deals with the modeling and experiment of a robot system for force/impact control performance. The basic model is composed of a direct drive motor, servo amplifier, link, force sensor and environments. Based on the developed model, the stability of the whole system was analyzed via root locus method. For the force control, integral force compensation with velocity feedback method shows the best performance of all the explicit force control strategies. In dealing with impact, PID position control and the explicit force control method were implemented. Instead of add more damping to the robot system by velocity feedback, we developed a new passive damping method and it was also applied to enhance the damping characteristic of the system.

  • PDF

A Study on the Application of the Cutout Piston for the Improvement of the MR Damper's Control Effect (MR 댐퍼의 제어 효과 향상을 위한 Cutout 피스톤 적용에 관한 연구)

  • Kim, Jong-Hyuk;Bae, Jae-Sung;Hwang, Jai-Hyuk;Hong, Yeh-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.506-513
    • /
    • 2011
  • This paper is concerned with a study on the control effect of the MR damper using the cutout piston. The MR damper has passive damping force by the oil pressure and controllable damping force by the magnetic effect. As the velocity of the MR damper's piston increases the passive damping force increases and the ratio of the controllable damping force to the total damping force is decreased. Consequently, the control performance of the MR damper is reduced according to the increase of the velocity. In this paper, the cutout piston concept is applied to the MR damper to improve MR damper's control performance by reducing the passive damping effect. The MR damper with the cutout piston has been designed and manufactured and its hydraulic and electromagnetic analysis has been performed to predict its performance. The control performances of the MR damper with the cutout piston are verified through the comparison of experiment results and simulation results.

Sloped rolling-type bearings designed with linearly variable damping force

  • Wang, Shiang-Jung;Sung, Yi-Lin;Hong, Jia-Xiang
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.129-144
    • /
    • 2020
  • In this study, the idea of damping force linearly proportional to horizontal isolation displacement is implemented into sloped rolling-type bearings in order to meet different seismic performance goals. In addition to experimentally demonstrating its practical feasibility, the previously developed analytical model is further modified to be capable of accurately predicting its hysteretic behavior. The numerical predictions by using the modified analytical model present a good match of the shaking table test results. Afterward, several sloped rolling-type bearings designed with linearly variable damping force are numerically compared with a bearing designed with conventional constant damping force. The initial friction damping force adopted in the former is designed to be smaller than the constant one adopted in the latter. The numerical comparison results indicate that when the horizontal isolation displacement does not exceed the designed turning point (or practically when subjected to minor or frequent earthquakes that seldom have a great displacement demand for seismic isolation), the linearly variable damping force design can exhibit a better acceleration control performance than the constant damping force design. In addition, the former, in general, advantages the re-centering performance over the latter. However, the maximum horizontal displacement response of the linearly variable damping force design, in general, is larger than that of the constant damping force design. It is particularly true when undergoing a horizontal isolation displacement response smaller than the designed turning point and designing a smaller value of initial friction damping force.

Bingham Properties and Damping Force Control of an ER Fluid under Squeeze Mode (압착모드하에서 ER유체의 빙햄특성 및 댐핑력 제어)

  • 홍성룡;최승복
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.37-45
    • /
    • 2002
  • This paper presents the field-dependent Bingham characteristics and damping force control of an electro-rheological (ER) fluid under squeeze mode operation. The squeeze force of the ER fluid due to the imposed electric field is analyzed and an appropriate size of the disk-type electrode is devised. On the basis of the theoretical model of the ER fluid under squeeze mode operation, the yield stress and response speed of the ER fluid are distilled from the time responses of squeeze force to the step electric potentials. Measured squeeze forces under various excitation conditions are compared with the predicted ones from Bingham model and time constant obtained at the transient response test. In addition, the controllability of the field-dependent damping force of the ER fluid under squeeze mode is experimentally demonstrated by implementing simple PID controller.

Maximum Force Limit of velocity-dependent Damping Devices Using Response Estimation Models (응답예측모델을 이용한 속도의존형 감쇠장치의 최대제어력 산정)

  • Lee, Sang-Hyun;Park, Ji-Hun;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.60-65
    • /
    • 2003
  • In this study, for estimating responses of a controlled structure and determining the maximum control force of velocity-dependent damping devices, three estimation models such as Fourier envelope convex model, probability model, and Newmark design spectrum are used. For this purpose, a procedure proposed by Gupta (1990) for estimating spectral velocity using pseudo-spectral velocity which is given by the estimation models is used and modified to consider the effects of increased damping ratio by the damping device. Time history results indicate that Newmark design spectrum gives the best estimation of maximum control force for over all period structures.

  • PDF

Maximum Control Force of Velocity-dependent Damping Devices Using Response Estimation Models (응답예측모델을 이용한 속도의존형 감쇠장치의 최대제어력 산정)

  • 이상현;민경원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.503-511
    • /
    • 2004
  • In this study, for estimating responses of a controlled structure and determining the maximum control force of velocity-dependent damping devices, three estimation models such as Fourier envelope convex model, probability model, and Newmark design spectrum are used. For this purpose, a procedure is proposed for estimating actual velocity using pseudo-velocity and this procedure considers the effects of damping ratio increased by the damping device. Time history results indicate that actual velocity should be used for estimating accurate maximum control force of damping device and Newmark design spectrum modified by the proposed equation gives the best estimation results for over all period structures.

A Study on the Application of Semi-active Suspension System to a 3-D Full Vehicle Model (전차 모델에 대한 반능동 현가장치의 적용에 대한 연구)

  • 방범석;백윤수;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.938-944
    • /
    • 1994
  • Active damping has been shown to offer increased suspension performance in terms of vehicle isolation, suspension packaging, and road-tire contract force. Many semi-active damping strategies have been introduced to approximate the response of active damping with the modulation of passive damping parameters. This study investigates the characteristics of semi-active suspension control through the simulation of passive, skyhook active, and semi-active damping models. A quarter car model is studied with the conrolled damping replacing both passive and active damping. A new semi-active scheme is suggested to eliminate the abrupt changes in semi-active damping force. It is shown that the new strategy performs almost identically to the so called "force controlled" semi-active law without steep changes in damping force or body acceleration.eleration.

  • PDF