• Title/Summary/Keyword: Damping Factor

Search Result 492, Processing Time 0.027 seconds

A Numerical Study on Acoustic Behavior in Gas Turbine Combustor with Acoustic Resonator (음향공명기가 장착된 가스터빈 연소실의 음향장 해석)

  • Park, I-Sun;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.95-102
    • /
    • 2005
  • Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed. mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes.

The Effect of Surface-Friction-Factor-Jump Characteristics on Retordynamics of a Seal (마찰계수 급상승 특성이 실의 로터다이나믹 특성에 미치는 영향)

  • 하태웅
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.197-203
    • /
    • 1996
  • This study is to analyze the rotordynamic effect of surface-friction- factor characteristics on an annular seal. The honeycomb geometry which shows friction-factor-jump phenomena is used in this study. A rotordynamic analysis for a contered annular seal has been developed by incorporating empirical friction-factor model for honeycomb stator surfaces. The results of the analysis for the honeycomb seal showing the friction-factor jump is compared to the non- friction-factor-jump case. The results yield that the friction-factor-jump decreasesdirect stiffness and cross coupled stiffness coefficients, and increases damping coefficient to stabilize rotating machinery in a rotordynamic point of view. The analysis of the honeyeomb seal for the friction-factor-jump case shows reasonably good compared to experimental results, especially, for cross coupled and damping coeffcients.

  • PDF

Matching Pursuit Sinusoidal Modeling with Damping Factor (Damping 요소를 첨가한 매칭 퍼슈잇 정현파 모델링)

  • Jeong, Gyu-Hyeok;Kim, Jong-Hark;Lim, Joung-Woo;Joo, Gi-Ho;Lee, In-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.105-113
    • /
    • 2007
  • In this paper, we propose the matching pursuit with damping factors, a new sinusoidal model improving the matching pursuit, for the codecs based on sinusoidal model. The proposed model defines damping factors by using a correlativity of parameters between the current and adjacent frame, and estimates sinusoidal parameters more accurately in analysis frame by using the matching pursuit according to damping factor, and synthesizes the final signal. Then it is possible to model efficiently without interpolation schemes. The proposed sinusoidal model shows a better speech quality without an additional delay than the conventional sinusoidal model with interpolation methods. Through the SNR(signal to noise ratio), the MOS(Mean Opinion Score), LR(Itakura-Saito likelihood ratio), and CD(cepstral distance), we compare the performance of our model with that of matching pursuit using interpolation methods.

Test method comparison for vibration-damping of materials (물질의 진동감쇠 시험법 비교)

  • 신수현;이용봉;정성수;조승일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.700-703
    • /
    • 2003
  • The test method of ASTM E 756 and KS D 0076 to estimate vibration-damping properties is compared. Comparison method depending on specimen support, exciting method and calculation method for loss factor is used. Half-power bandwidth method and vibration decay method is used in the calculation method for loss factor, and Young's modulus is decided by geometric character and density for specimen and resonance frequency. Vibration measurement sensor is compared by using non-contact displacement detector, velocity detector and accelerometer. This paper is also presented the matter which is able to cause error in the measurement

  • PDF

Estimation of Vibration-damping Properties for Steel Beam (Steel beam의 진동감쇠 특성평가)

  • Shin, Su-Hyun;Nam, Hyo-Duk;Jung, Sung-Soo;Lee, Young-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.439-442
    • /
    • 2003
  • The test method of ASTM E 756 and JIS G 0602 to estimate vibration-damping properties is presented. Measurement method depending on specimen support, exciting method and calculation method for loss factor is used. Half-power bandwidth method and vibration decay method is used in the calculation method for loss factor, and Young's modulus is decided by geometric character and density for specimen and resonance frequency. Vibration measurement sensor is compared by using non-contact displacement detector, velocity detector and accelerometer. The cause of measurement error is also presented.

  • PDF

Finite element vibration and damping analysis of a partially covered cantilever beam

  • Yaman, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.141-151
    • /
    • 2005
  • There are several ways of decreasing the vibration energy of structures. One of which is special damping layers made of various viscoelastic materials are widely applied in structures subjected to dynamic loading. In this study, a cantilever beam, partially covered by damping a constraining layers, is investigated by using Finite Element method (FEM). The frequency and system loss factor are evaluated. The effects of different physical and geometrical parameters on the natural frequency and system loss factors are discussed.

A Method of Singularity Avoidance for A Robot-Positioner System (로보트와 포지셔너의 특이성 회피 방법)

  • Choi, Shin-Hyeong;Suh, Il-Hong;Lim, Joon-Hong;Kim, Kyung-Ki
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.7-14
    • /
    • 1989
  • A trajectory control method being capable of singularity avoidance is proposed for a robot and positoner (R-P) system. In the proposed method, the damping factor of the Damped Least Square (DLS) method is adjusted by gradients of trajectory following errors so that the singularity avoidance can be achieved while mimimizing the errors. Two numerical examples are given by employing a Rhino robot with five degrees-of-freedom (d.o.f.) and two d.o.f's, where the method of maximizing the manipulagility the DLS method with a fixd damping factor and the proposed method are compared in terms of trajectory following errors, manipulabilities and joint velocities.

  • PDF

Seismic force reduction factor for steel moment resisting frames with supplemental viscous dampers

  • Serror, M. Hassanien;Diab, R. Adel;Mourad, S. Ahmed
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1171-1186
    • /
    • 2014
  • Damping is one of the parameters that control the performance of structures when they are subjected to seismic, wind, blast or other transient shock and vibration disturbances. By adding supplemental viscous dampers, the energy input from a transient deformation is absorbed, not only by the structure itself, but also by the supplemental dampers. The aim of this study is to evaluate the values of both damping and ductility reduction factors for steel moment resisting frames with supplemental linear viscous dampers. Two-dimensional finite element models have been established for a range of low to mid rise buildings with different parameters: number of floors; number of bays; and number of dampers with different supplemental damping ratios (from 5% to 30%). A parametric study has been performed using time history analyses and a well-documented research method (N2-method). In addition, an equation has been proposed for each reduction factor based on regression analysis for the obtained results. The results of the Time history analyses are compared with those of a modified N2-method. Moreover, a comparison with values specified in the European code EC8 and the Egyptian code ECP-201 has been performed.

An Experimental Study on the Dynamic Characteristics of Damping Flexible Coupling( II ) (유체감쇠 커플링의 동특성에 관한 실험적 연구(II))

  • 김종수;제양규;정재현;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.23-31
    • /
    • 1994
  • The present works are the experimental results of the study to develope a damping flexible coupling which has a high performance of control for the torsional vibrations of power shafts in a large machinery. The damping flexible coupling is manufactured and is compared for dynamic characteristics with other type coupling which is the Geislinger coupling. The static coefficient of stiffness and the damping coefficient allows the control of excitation frequency through a cam driver. The experimental results obtained from the two couplings are compared with the theoretically results.

  • PDF

Vibration Characteristics of the Floor Structures Inserted with Damping Materials (제진재가 삽입된 바닥 구조의 진동특성에 대한 실험연구)

  • Jeon, Jin-Yong;Jeong, Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1036-1043
    • /
    • 2006
  • Damping materials for reducing heavy-weight floor impact noise in reinforced concrete structures were tested in apartment buildings. The effect of damping materials and an impact isolator were compared with an on-site experiment conducted in a high-rise apartment building. The loss factor of damping material analyzed more than 2 times than rubber to $1.5{\sim}2.3$, could know that Damping layer has excellent attenuation performance in side of vibration reduction. The results showed that the resonance frequency increased but vibration acceleration level decreased when the damping materials were used. The heavy-weight impact sound levels of the structure decreased substantially at 63 Hz, whereas the sound levels of the structure with the impact isolator increased.