• Title/Summary/Keyword: Damper design

Search Result 820, Processing Time 0.025 seconds

Shape Optimization of Uniaxial Vibrating Metal Damper (일축 진동형 금속제진장치 형상 최적설계)

  • Yoon, Ji-Hoon;Park, Ji-Woon;Lim, Yun-Mook;Yoon, Gil-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.313-318
    • /
    • 2017
  • This study performs the structural analysis and the optimum design of a vibrating metal damper to absorb vibration energy. Unlike other dampers such as rubber bearing, friction or viscose dampers, the present vibrating metal damper utilizes the plastic deformation of a steel and its associated hysteresis phenomenon to reduce vibrations of structures. To optimize this vibrating metal damper, it is important to obtain plastic deformation through the damper. To achieve this, the shape optimization method is developed and applied to find out optimal envelopes of the metal damper. Depending on the parameterization scheme, some novel optimal shapes can be found.

A Study on the Disk Vibration Control by Disk Damper For 100kTPI Hard Disk Drive Design (100KTPI급 HDD 구현을 위한 DISK DAMPER에 관한 연구)

  • Han, Y.S.;Kang, S.W.;Oh, D.H.;Hwang, T.Y.;Tran, Greg
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.363-368
    • /
    • 2002
  • A practical implementation method of squeeze-film aeroelastic disk vibration damping and its practical design performance are presented to provide a solution method to meet the tight TMR(Track Mis-Registration) design budget of high-TPI HDDs. Most previous research results are mainly based on the component-level study in the 'open-cover state' which is far from the realistic operation HDD condition. In this study, the squeeze-film disk damping effect is widely investigated under the realistic drive-level condition of 'enclosed-cover state.' It is found that the proper aeroelastic gap(s) between disk(s) and adjacent surface(s) to give significant vibration reduction in the enclosed HDD operating conditions can be achieved not only by classical well-known squeeze-film damping gaps such as very small 0.0x-millimeter level gaps which are not practically implementable in mass-production HDDs, but also by a few 0.x millimeter which is possible for designing realistic HDD design. The various experimental results including drive-level PES are also presented to prove feasibility of the optimal disk damper design for 93kTPI HDDs.

  • PDF

A Study on Cost-Effectiveness Evaluation and Optimal Design of ant dampers for Cable-Stayed Bridges (사장교에 장착된 MR 댐퍼의 비용효율성 평가 및 최적설계 연구)

  • Park, Won-Suk;Hahm, Dae-Gi;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.47-56
    • /
    • 2006
  • A method is presented for evaluating the economic efficiency of a semi-active magneto-rheological (MR) damper system for cable-stayed bridges under earthquake loadings. An optimal MR damper capacity maximizing the cost-effectiveness is estimated for various seismic characteristics of ground motion. The economic efficiency of MR damper system is addressed by introducing the life-cycle cost concept. To evaluate the expected damage cost, the probability of failure is estimated. The cost-effectiveness index is defined as the ratio of the sums of the expected damage costs and each device cost between a bridge structure with the MR damper system and a bridge structure with elastic bearings. In the evaluation of cost-effectiveness, the scale of damage cost is adopted as parametric variables. The results of the evaluation show that the MR damper system can be a cost-effective design alternative. The optical capacity of MR damper is increased as the seismic hazard becomes severe.

Design and Analysis of Magneto-Rheological Damper Using Permanent Magnet (영구자석을 이용한 전단모드 MR 댐퍼 설계 및 해석)

  • Kim, Wan Ho;Suresh, Kaluvan;Park, Jhin Ha;Choi, Sang Min;Park, Chun-Yong;Kang, Je-Won;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.443-448
    • /
    • 2016
  • A novel Permanent Magnet based Magneto Rheological (PM-MR) damper is proposed in this paper. The principle of proposed MR damper is achieved by designing a linearly varying magnetization area with-respect to the movable permanent magnetic based piston setup. Nowadays, commercially available MR damper uses electromagnetic coils for generating the variable magnetic fields corresponding to the variable damping force. The amount of magnetic field produced by the electromagnetic coils are depends on the biasing current of voltage source. The key enabling concept of the proposed MR damper is to replace the electromagnetic coils and the voltage sources by utilizing the variable area based permanent magnetic piston setup. The proposed unique design structure of PM-MR damper has an increasing shear mode damping force with the piston movement in both jounce and rebound motion. In this research, analytical model of the proposed structure is derived and the structural design of proposed concept is verified using numerical CAD tool. As a result, the damping force is increase when piston movement in both jounce and rebound motion.

A Study on Leaking amount Test of Control Damper - For a Performance Based Designed of Smoke Control System - (제연댐퍼 누설량 시험에 관한 연구 - 제연시스템의 성능위주설계를 위하여 -)

  • Choi, Kyu-Chool;Song, Yun-Suk;Cha, Jong-Ho
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.131-137
    • /
    • 2009
  • This study measured smoke control damper leaking amount of condition of various kinds examination regarding AMCA Standard 500-D-98. As result of study establish because smoke control damper leaking amount performance curve that use tester data of engineering applies right design method of smoke control system and test method design, drawing examination, performance test and do so that right comprehension and performance about skill may be defined. Also user wishes to prove performance of smoke control system and construct smoke control system of reliable performance-based design derive smoke control damper quality improvement continuously selection of smoke control damper by performance judgment of performance curve.

A simple damper optimization algorithm for both target added damping ratio and interstorey drift ratio

  • Aydin, Ersin
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.83-109
    • /
    • 2013
  • A simple damper optimization method is proposed to find optimal damper allocation for shear buildings under both target added damping ratio and interstorey drift ratio (IDR). The damping coefficients of added dampers are considered as design variables. The cost, which is defined as the sum of damping coefficient of added dampers, is minimized under a target added damping ratio and the upper and the lower constraint of the design variables. In the first stage of proposed algorithm, Simulated Annealing, Nelder Mead and Differential Evolution numerical algorithms are used to solve the proposed optimization problem. The candidate optimal design obtained in the first stage is tested in terms of the IDRs using linear time history analyses for a design earthquake in the second stage. If all IDRs are below the allowable level, iteration of the algorithm is stopped; otherwise, the iteration continues increasing the target damping ratio. By this way, a structural response IDR is also taken into consideration using a snap-back test. In this study, the effects of the selection of upper limit for added dampers, the storey mass distribution and the storey stiffness distribution are all investigated in terms of damper distributions, cost function, added damping ratio and IDRs for 6-storey shear building models. The results of the proposed method are compared with two existing methods in the literature. Optimal designs are also compared with uniform designs according to both IDRs and added damping ratios. The numerical results show that the proposed damper optimization method is easy to apply and is efficient to find optimal damper distribution for a target damping ratio and allowable IDR value.

Optimal Design of a Squeeze Film Damper Using an Enhanced Genetic Algorithm

  • Ahn, Young-Kong;Kim, Young-Chan;Yang, Bo-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1938-1948
    • /
    • 2003
  • This paper represents that an enhanced genetic algorithm (EGA) is applied to optimal design of a squeeze film damper (SFD) to minimize the maximum transmitted load between the bearing and foundation in the operational speed range. A general genetic algorithm (GA) is well known as a useful global optimization technique for complex and nonlinear optimization problems. The EGA consists of the GA to optimize multi-modal functions and the simplex method to search intensively the candidate solutions by the GA for optimal solutions. The performance of the EGA with a benchmark function is compared to them by the IGA (Immune-Genetic Algorithm) and SQP (Sequential Quadratic Programming). The radius, length and radial clearance of the SFD are defined as the design parameters. The objective function is the minimization of a maximum transmitted load of a flexible rotor system with the nonlinear SFDs in the operating speed range. The effectiveness of the EGA for the optimal design of the SFD is discussed from a numerical example.

Preliminary Design Procedure for Practical Application of Dampers Using Earthquake Response Spectrum (응답스펙트럼을 활용한 감쇠장치 예비 설계절차 제시)

  • Roh, Ji Eun;Lee, Sang Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.109-117
    • /
    • 2019
  • In this study, a design procedure for the practical application of the dampers to building structures under earthquake loads was presented by using earthquake response spectrum. Nonlinear time history results using a 10 story building structure installed with damper verified the effectiveness of the proposed procedure by showing that the structural response could be reduced to the target performance level for seismic loads. Since the proposed design procedures are based on response spectrum seismic analysis result of the original structure, the capacity, location and the number of damper and the consequent response reduction effects can be preliminarily determined without performing the nonlinear time history analysis.

Improving the hysteretic behavior of Concentrically Braced Frame (CBF) by a proposed shear damper

  • Ghamari, Ali;Haeri, Hadi;Khaloo, Alireza;Zhu, Zheming
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.383-392
    • /
    • 2019
  • Passive steel dampers have shown favorable performance in last earthquakes, numerical and experimental studies. Although steel dampers are more affordable than other types of damper, they are not economically justified for ordinary buildings. Therefore, in this paper, an innovative steel damper with shear yielding mechanism is introduced, which is easy to fabricate also can be easily replaced after sever earthquakes. The main goal of implementing such a mechanism is to control the possible damage in the damper and to ensure the elastic behavior of other structural components. The numerical results indicate an enhancement of the hysteretic behavior of the concentrically braced frames utilizing the proposed damper. The proposed damper change brittle behavior of brace due to buckling to ductile behavior due to shear yielding in proposed damper. The necessary relations for the design of this damper have been presented. In addition, a model has been presented to estimate load-displacement of the damper without needing to finite element modeling.