• 제목/요약/키워드: Damper Location

검색결과 68건 처리시간 0.025초

철골 구조물의 제진 및 면진성능 (Damping and Isolation Performance of Steel Structure)

  • 윤현도;박완신;한병찬;황선경;이규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권2호
    • /
    • pp.221-230
    • /
    • 2004
  • 본 논문에서는 지진하중 작용시, 점탄성 감쇠기 및 면진장치를 설치한 다층 철골 모멘트 저항 골조의 동적응답을 해석적으로 규명하였다. 본 연구의 목적은 구조해석을 수행하여 최대 층간변위 및 최대응력법에 의해 효율적인 점탄성 감쇠기의 위치를 결정하는 것이다. 또한, 효율적인 진동 제어방법을 모색하기 위하여 점탄성 감쇠기 및 납삽입고무베어링형 면진장치에 의한 제어효과를 부재력, 조합응력, 그리고 구조물의 고유주기 등을 이용하여 상호 비교 분석하였다.

Analysis of a Building Structure with Added Viscoelastic Dampers

  • Lee, Dong-Guen;Hong, Sung-Il;Kim, Jin-Koo
    • 한국지진공학회논문집
    • /
    • 제2권3호
    • /
    • pp.27-35
    • /
    • 1998
  • Steel structures with added viscoelastic dampers are analysed to investigat their behavior under earthquake excitation. The direct integration method, which produces exact solution for the non-proportional or non-classical damping system, is used throughout the analysis. The results from modal strain energy method are also provided for comparison. Then a new analytical a, pp.oach, based on the rigid floor diaphragm assumption and matrix condensation technique, is introduced, and the results are compared with those obtained from direct integration method and modal strain energy method. The well known phenomenon, that the effectiveness of the viscoelastic dampers depends greatly on the location of the dampers, is once again confirmed in the analysis. It is also found that the modal strain energy method generaly underestimates the responses obtained from the direct integration method, especially when the dampers are placed in only a part of the building. The proposed method turns out to be very efficient with considerable saving in computation this and reasonably accurate considering the reduced degrees of freedom.

  • PDF

모형 연소실에 장착된 다중 스월인젝터의 음향학적 감쇠 효과 (Effect of Multi-Swirl Injector on Acoustic Damping in Model Combustion Chamber)

  • 김현성;김병선;윤영빈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.198-203
    • /
    • 2007
  • 본 연구의 목표는 air core의 길이 조절이 가능한 스월인젝터의 음향학적인 감쇠기능을 통해 고주파 연소불안정을 억제하는 것이다. air core(길이, 형상, 부피)와 인젝터의 위치에 대한 음향학적인 감쇠 효과는 선행 연구를 통해 실험되었다. 이러한 결과들을 바탕으로 다중 인젝터들의 효과에 대한 연구를 진행하였다. 실험 결과로부터 각 모드의 배(anti-node)에 장착된 인젝터들의 수의 증가로 감쇠효과가 증가하는 것을 확인하였다. 또한 각 모드들의 배(anti-node)에 장착되어 동조된 인젝터들이 동시에 개별적인 모드 감쇠 성능을 보일 수 있음을 확인했다.

  • PDF

Finite element analysis of vehicle-bridge interaction by an iterative method

  • Jo, Ji-Seong;Jung, Hyung-Jo;Kim, Hongjin
    • Structural Engineering and Mechanics
    • /
    • 제30권2호
    • /
    • pp.165-176
    • /
    • 2008
  • In this paper, a new iterative method for solving vehicle-bridge interaction problems is proposed. Iterative methods have advantages over the non-iterative methods in that it is not necessary to update the system matrix for a given wheel location, and the method can be applied for a new type of car or bridge with few or no modifications. In the proposed method, the necessity of system matrices update is eliminated using the equivalent interaction force acting on the bridge, which is obtained iteratively. Ballast stiffness is included in the interaction forces and the geometric compatibility at the contact points are used as convergence criteria. The bridge is considered as an elastic Bernoulli-Euler beam with surface irregularity and ballast stiffness. The moving vehicle is modeled as a multi-axle mass-spring-damper system having many degrees of freedom depending on the number of axles. The pitching effect, which is the interaction effect between the rear and front wheels when a vehicle begins to enter or leave the bridge, is also considered in the formulation including extended ground boundaries having surface irregularity and ballast stiffness. The applicability of the proposed method is illustrated in the numerical studies.

실험계획법을 이용한 다목적 차량의 측면하중 측정을 위한 3축 로드셀 개발 (Development of 3-axis Loadcell for Measuring the Side Force of MPV Using Design of Experiment)

  • 추성일;박준협;이진근;박지영
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.83-93
    • /
    • 2007
  • This paper represents the development of 3-axises loadcell for measuring the side-force of suspension module of MPV(Multi Purposed Vehicle). The side force causes the failure of damper, such as leakage. The loadcell was developed using strain gauges, and the Wheastone bridge circuit to compensate for the cross-talk between the each axises and the measurement error by temperature. Structure analysis of loadcell was accomplished with FEM(Finite Element Method) to optimize the location of strain gages. The design optimization for important factors that have an effect on performance of loadcell was accomplished by using DOE(Design of Experiment). Loadcell was produced and successfully tested, showing good sensitivity and low cross-talk. The cross-talk of the developed loadcell is bellow 5%. The load history was measured at proving ground. The maximum side-force, the longitudinal force, and vertical force of MPV are 4.2 kN, 8.0 kN, and 17.0 kN, respectively, at Belgian road.

가스 엔진 구동 열펌프 실외기 엔진/압축기 진동 절연 설계 (Designing isolation system for Engine/Compressor Assembly of GAS Driven Heat Pump)

  • Lenchine Valeri V.;Ko, Hong-Seok;Joo, Jae-Man;Oh, Sang-Kyoung
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1128-1133
    • /
    • 2003
  • A gas driven heat pump (GHP) core design comprises internal combustion engine, compressors incorporated to a cooling/heating system, rubber mountings and belt transmissions. Main excitation farces are generated by an engine, compressors themselves and belt fluctuation. It leads to high vibration level of the mount that can cause damage of GHP elements. Therefore an appropriate design of the mounting system is crucial in terms of reliability and vibration reduction. In this paper oscillation of the engine mount is explored both experimentally and analytically. Experimental analysis of natural frequencies and operational frequency response of the GHP engine mounting system enables to create simplified model for numerical and analytical investigations. It is worked out criteria f3r vibration abatement of the isolated structure. Influence of bracket stiffness between engine and compressors, suspension locations and damper performance is investigated. Ways to reduce excitation forces and improve dynamic performance of the engine-compressor mounting system are considered from these analyses. Implementation of the proposed approach permits to choose appropriate rubber mountings and their location as well as joining elements design A phase matching technique can be employed to control forces from main exciters. It enables to changing vibration response of the structure by control of natural modes contribution. Proposed changes lead to significant vibration reduction and can be easily utilized in engineering practice.

  • PDF

Experimental investigation on multi-mode vortex-induced vibration control of stay cable installed with pounding tuned mass dampers

  • Liu, Min;Yang, Wenhan;Chen, Wenli;Li, Hui
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.579-587
    • /
    • 2019
  • In this paper, pounding tuned mass dampers (PTMDs) were designed to mitigate the multi-mode vortex-induced vibration (VIV) of stay cable utilizing the viscous-elastic material's energy-dissipated ability. The PTMD device consists of a cantilever metal rod beam, a metal mass block and a specially designed damping element covered with viscous-elastic material layer. Wind-tunnel experiment on VIV of stay cable model was set up to validate the effectiveness of the PTMD on multi-mode VIV mitigation of stay cable. By analyzing and comparing testing results of all testing cases, it could be verified that the PTMD with viscous-elastic pounding boundary can obviously mitigate the VIV amplitude of the stay cable. Moreover, the installed location and the design parameters of the PTMD device based on the controlled modes of the primary stay cable, would have a certain extent suppression on the other modal vibration of the stay cable, which means that the designed PTMDs are effective among a large band of frequency for the multi-mode VIV control of the stay cable.

Motion Analysis of A Wind-Wave Energy TLP Platform Considering Second-order Wave Forces

  • Hongbhin Kim;Eun-hong Min;Sanghwan Heo;WeonCheol Koo
    • 한국해양공학회지
    • /
    • 제36권6호
    • /
    • pp.390-402
    • /
    • 2022
  • Offshore wind energy has become a major energy source, and various studies are underway to increase the economic feasibility of floating offshore wind turbines (FOWT). In this study, the characteristics of wave-induced motion of a combined wind-wave energy platform were analyzed to reduce the variability of energy extraction. A user subroutine was developed, and numerical analysis was performed in connection with the ANSYS-AQWA hydrodynamic program in the time domain. A platform combining the TLP-type FOWT and the Wavestar-type wave energy converter (WEC) was proposed. Each motion response of the platform on the second-order wave load, the effect of WEC attachment and Power take-off (PTO) force were analyzed. The mooring line tension according to the installation location was also analyzed. The vertical motion of a single FOWT was increased approximately three times due to the second-order sum-frequency wave load. The PTO force of the WEC played as a vertical motion damper for the combined platform. The tension of the mooring lines in front of the incident wave direction was dominantly affected by the pitch of the platform, and the mooring lines located at the side of the platform were mainly affected by the heave of the platform.

Control strategy of the lever-type active multiple tuned mass dampers for structures

  • Li, Chunxiang;Han, Bingkang
    • Wind and Structures
    • /
    • 제10권4호
    • /
    • pp.301-314
    • /
    • 2007
  • The lever-type active multiple tuned mass dampers (LT-AMTMD), consisting of several lever-type active tuned mass dampers (LT-ATMD), is proposed in this paper to attenuate the vibrations of long-span bridges under the excitation directly acting on the structure, rather than through the base. With resorting to the derived analytical-expressions for the dynamic magnification factors of the LT-AMTMD structure system, the performance assessment then is conducted on the LT-AMTMD with the identical stiffness and damping coefficient but unequal mass. Numerical results indicate that the LT-AMTMD with the actuator set at the mass block can provide better effectiveness in reducing the vibrations of long-span bridges compared to the LT-AMTMD with the actuator set at other locations. An appealing feature of the LT-AMTMD with the actuator set at the mass block is that the static stretching of the spring may be freely adjusted in accordance with the practical requirements through changing the location of the support within the viable range while maintaining the same performance (including the same stroke displacement). Likewise, it is shown that the LT-AMTMD with the actuator set at the mass block can further ameliorate the performance of the lever-type multiple tuned mass dampers (LT-MTMD) and has higher effectiveness than a single lever-type active tuned mass damper (LT-ATMD). Therefore, the LT-AMTMD with the actuator set at the mass block may be a better means of suppressing the vibrations of long-span bridges with the consequence of not requiring the large static stretching of the spring and possessing a desirable robustness.

Numerical study on the mitigation of rain-wind induced vibrations of stay cables with dampers

  • Li, Shouying;Wu, Teng;Li, Shouke;Gu, Ming
    • Wind and Structures
    • /
    • 제23권6호
    • /
    • pp.615-639
    • /
    • 2016
  • Although the underlying mechanism of rain-wind induced vibrations (RWIVs) of stay cables has not been fully understood, some countermeasures have been successfully applied to mitigating this kind of vibration. Among these, installing dampers near the bridge deck was widely adopted, and several field observations have shown its effectiveness. In this study, the effectiveness of dampers to RWIVs of stay cables is numerically investigated comprehensively by means of finite difference method (FDM). Based on the free vibration analysis of a taut string, it is found that the 3-points triangle scheme, which can be easily implemented in FDM, can offer an excellent approximation of the concentrated damping coefficient (expressed as a Dirac delta function) at the location where the damper is installed. Then, free vibration analysis of a 3-D continuous stay cable attached with two dampers is carried out to study the relationship of modal damping ratio and damping coefficient of the dampers. The effects of orientation of the dampers and cable sag on the modal damping ratio are investigated in detail. Finally, the RWIV response of a 3-D continuous stay cable attached with two dampers is examined. The results indicate that 0.5% of damping ratio is sufficient to reduce the RWIV vibration of the Cable A20 on the No.2 Nanjing Bridge over Yangtze River.