• Title/Summary/Keyword: Damaged zone

Search Result 215, Processing Time 0.026 seconds

Penetration of Compacted Bentonite into the Discontinuity in the Excavation Damaged Zone of Deposition Hole in the Geological Repository (심층처분장 처분공 주변 굴착손상영역에 존재하는 불연속면으로의 압축 벤토나이트 침투)

  • Lee, Changsoo;Cho, Won-Jin;Kim, Jin-Seop;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.193-213
    • /
    • 2020
  • A mathematical model to simulate more realistically the penetration of compacted bentonite buffer installed in the deposition hole into the discontinuity in the excavation damaged zone formed at the inner wall of the deposition hole in the geological repository for spent fuel is developed. In this model, the penetration of compacted bentonite is assumed to be the flow of Bingham fluid through the parallel planar rock fracture. The penetration of compacted bentonite is analyzed using the developed model. The results show that the maximum penetration depth of compacted bentonite into the rock fracture is proportioned to the swelling pressure of saturated compacted bentonite and the aperture of rock fracture. However, it is in inverse proportion to the yield strength of compacted bentonite. The viscosity of compacted bentonite dominates the penetration rate of compacted bentonite, but has no influence to the maximum penetration depth.

The Toughening Mechanism of the Rubber-Modified Epoxy Resin (고무 변성 에폭시의 고인화 메카니즘)

  • 이덕보;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.106-109
    • /
    • 2001
  • In this work, we investigate the toughening mechanism of the rubber-modified epoxy resin. The fracture toughness($K_{IC}$) is measured using CT specimens for three kinds of rubber-modified epoxy resin with different rubber content. The damage zone and rubber particles around a crack tip of a damaged specimen just before fracture are observed by a polarization microscope and an atomic force microscope(AFM). Both the fracture energy($G_{IC}$) and the size of damage zone increase with the rubber content below l5wt%. The size of the rubber particles can be qualitatively correlated with the $G_{IC}$ and the size of damage zone. The cavitation of the rubber particles inside the damage zone is observed, which is expected to be main toughening mechanism by rubber particles. the stress which causes the cavitation of rubber particles is estimated by the Dugdale model.

  • PDF

The Inflence of Excavation Damaged Zone around an Underground Research Tunnel in KAERI (한국원자력연구원 내 지하처분연구시설 주변의 암반 손상대 영향 평가)

  • Kwon, S.;Kim, J.S.;Cho, W.J.
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.11-19
    • /
    • 2008
  • The development of an excavation damaged zone, EDZ, due to the blasting impact and stress redistribution after excavation, can influence on the long tenn stability, economy, and safety of the underground excavation. In this study, the size and characteristics of an EDZ around an underground research tunnel, which was excavated by controlled blasting, in KAERI were investigated. The results were implemented into the modelling for evaluating the influence of an EDZ on hydro-mechanical behavior of the tunnel. From in situ tests at KURT, it was possible to determine that the size of EDZ was about l.5rn. Goodman jack tests and laboratory tests showed that the rock properties in the EDZ were changed about 50% compared to the rock properties before blasting. The size and property change in the EDZ were implemented to a hydro-mechanical coupling analysis. In the modeling, rock strengths and elastic modulus were assumed to be decreased 50% and. the hydraulic conductivity was increased 1 order. From the analysis, it was possible to see that the displacement was increased while the stress was decreased because of an EDZ. When an EDZ was considered in the model, the tunnel inflow was increased about 20% compared to the case without an EDZ.

Relations Between Impact Damage and Ply Angle Under Same Impact Energy Condition (同一한 衝擊에너지 條件下의 CFRP 斜交積層板의 衝擊損傷과 配向角의 關係)

  • ;笠野英秋
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1824-1832
    • /
    • 1992
  • This study investigated the compressive Young's modulus and the impactinduced damage of CFRP angle-ply laminate under same impact energy condition. The specimens of angle-ply laminate composites [0.deg.$_{6}$/ .theta..deg.$_{10}$/ 0.deg.$_{6}$] with .theta..deg. =30.deg., 45.deg., 60.deg. and 90.deg. were employed, and damaged by steel balls of diameter of 5mm and 10mm propelled by air gun type impact testing machine. The impact damaged zones were observed through a scanning acoustic microscope(SAM), and their cross-sections were observed through a scanning electron microscope(SEM). The compressive Young's moduli before and after impact were measured, and compared with the theoretical values calculated. The results obtained were as follows: (1) The damage areas on the interfacial boundaries showed more severe change on the back side interface than on the impact side interface with increasing ply-angle. (2) The damage areas on the interfacial boundaries became larger with increasing impact velocity or ply-angle. (3) The impact damaged zone showed the delamination on the interfacial boundaries and transverse cracks inside laminas. (4) The impact damaged zone was affected by the impactor size and speed or ply-angle under same impact energy condition. (5) Compressive Young's moduli before and after impact were lower than theoretical value, but showed a similar change according to ply-angle. (6) Compressive Young's moduli after impact were higher than those before impact, but there was no remarkable change in apparent compressive modulus after impact.t.act.

The Evaluation and Comparison of Alternative Site for the Second Service Facilities Zone near the Tonghak Temple in Mt. Kyeryong National Park (계룡산 국립공원 동학사 제2집단시설지구의 위치선정평가 및 대안비교)

  • Lee, Hee-Seon;Lee, Kyoo-Seock
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.2
    • /
    • pp.29-37
    • /
    • 1995
  • The national park should be preserved in accordance with the regulation, but the development planning or facilities management planning has not been faithful to the spirits of the regulation. Recently natural environment has been radically changed, and especially damaged by large scale development of Service Facilities Zone. Thus the effective land use planning of the national park is required. Therefore, the purpose of this study is to propose the alternative site for The Second Service Facilities Zone in Mt. Kyeryong National Park using the GIS, and to compare the alternative site with the existing development site. Site selection was based on Rules of Combination which covers topographic analysis, viewshod analysis, distance analysis from hot spring well, land use analysis, and forest stand analysis.

  • PDF

Residual Stress Analysis of Laser Cladding Repair for Nuclear Steam Generator Damaged Tubes (원전 증기발생기 레이저 클래딩 보수부위 잔류응력 해석)

  • Han, Won-Jin;Lee, Sang-Cheol;Lee, Seon-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.56-60
    • /
    • 2008
  • Laser cladding technology was studied as a method for upgrading the present repair procedures of damaged tubes in a nuclear steam generator and Doosan subsequently developed and designed a new Laser Cladding Repair System. One of the important features of this newly developed Laser Cladding Repair System is that molten metal can be deposited on damaged tube surfaces using a laser beam and filler wire without the need to install sleeves inside the tube. Laser cladding qualification tests on the steam generator tube material, Alloy 600, were performed according to ASME Section IX. Residual stress analyses were performed for weld metal and heat affected zone of as-welded and PWHT with SYSWELD software.

  • PDF

Rehabilitation of exterior RC beam-column connections using epoxy resin injection and galvanized steel wire mesh

  • Marthong, Comingstarful
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.253-263
    • /
    • 2019
  • The efficacy of a galvanized steel wire mesh (GSWM) as an alternative material for the rehabilitation of RC beam-column connections damaged due to reversed cyclic loading was investigated. The repair mainly uses epoxy resin infused under pressure into the damaged zone and then confined using three types of locally available GSWM mesh. The mesh types used herein are (a) Weave type square mesh with 2mm grid opening (GWSM-1) (b) Twisted wire mesh with hexagonal opening of 15 mm (GSWM-2) and (c) welded wire mesh with square opening of 25 mm (GSWM-3). A reduced scale RC beam-column connection detailed as per ductile detailing codes of Indian Standard was considered for the experimental investigation. The rehabilitated specimens were also subjected to similar cyclic displacement. Important parameters related to seismic capacity such as strength, stiffness degradation, energy dissipation, and ductility were evaluated. The rehabilitated connections exhibited equal or better performance and hence the adopted rehabilitation strategies could be considered as satisfactory. Confinement of damaged region using GSWM-1 significantly enhanced the seismic capacity of the connections.

An Assessment of the Excavation Damaged Zone in the KAERI Underground Research Tunnel (원자력연구원 내 지하처분연구시설의 암반 손상대 발생영향 분석)

  • Kim, Jin-Seop;Kwon, Sang-Ki;Cho, Won-Jin
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.21-31
    • /
    • 2009
  • An excavation damaged zone (EDZ) is created by fracturing, excavation or stress redistribution of tunnels. In this zone the mechanical and hydraulic properties of rock are changed, which makes additional cracks and serves as a dominant pathway of groundwater flow. In this study, an assessment on an EDZ size was practiced by the measurement of the deformation modulus at the KAERI underground research tunnel (KURT), and the information was applied to the modelling analysis using FLAC2D software. The EDZ at KURT fell into the range of 0.6~1.8m and the deformation moduli of the EDZ generally correspond to about 40% of intact rock mass. With a consideration of the EDZ in numerical analysis, tunnel displacements increased by about 65% and the maximum principal stress decreased to 58% from the case without EDZ. The plastic zone of the tunnel was enlarged to the crown and invert zones of the tunnel within the range of the length of rock bolts. About 2% of the total tunnel displacement with EDZ was suppressed by the KURT support system. It is anticipated that the investigation of an EDZ can be used as an important and fundamental research for validating the overall performance of a high level waste disposal system.

Utilizing CFRP and steel plates for repair of damaged RC beams with circular web openings

  • Fayyadh, Moatasem M.;Abed, Mohammed J.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.49-61
    • /
    • 2022
  • This paper presents an experimental investigation into the effectiveness of using carbon fibre reinforced polymer (CFRP) and steel plates to repair damaged reinforced concrete (RC) beams with circular web openings at shear zones. It highlights the effectiveness of externally bonded CFRP and steel plates in repairing damaged RC beams by analysing the repaired beams'load capacity, deflection, strain, and failure mode. For the experiment, a total of five beams were used, with one solid beam as a control beam and the other four beams having an opening near the shear zone. Two beams with openings were repaired using inclined and vertical configuration CFRP plates, and the other two were repaired using inclined and vertical configuration steel plates. The results confirm the effectiveness of CFRP and steel plates for repairing damaged RC beams with circular openings. The CFRP and steel plates significantly increase ultimate capacity and reduce deflection under the openings. The inclined configuration of both CFRP and steel plates was more effective than the vertical configuration. Using an inclined configuration not only increases the ultimate capacity of the beams but also changes the mode of failure from shear to flexural.