• Title/Summary/Keyword: Damaged pipelines

Search Result 24, Processing Time 0.028 seconds

Analysis of Gas Pipelines Damaged in X-65 Steels (X-65 배관용 재료의 손상해석)

  • Jin, Yeung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.4
    • /
    • pp.197-204
    • /
    • 2005
  • It is well known that pipelines have the highest capacity and are the safest and least environmentally disruptive form of transporting oil and gas. However, pipeline damages caused by both internal and external corrosion is a major concern threatening the reliability of oil and gas transportation and the soundness of pipeline structure. In this study, we estimated the expected allowable damage defect by comparing the ASTM B31G code which has been developed as the evaluation method of reliability and incident prevention of damaged pipelines based on the amount of loss due to corrosion and the yield strength of materials to a modified theory considering diverse detailed corrosional forms. Furthermore, we suggested the method that estimates the expected life span of used pipelines by utilizing the reliability method based on major variables such as, the depth and length of damage and corrosional rate affecting the life expectancy of pipelines.

  • PDF

Reliability Estimation of Gas Pipelines Damaged by External Corrosion (외부부식에 의해 손상된 배관의 신뢰성평가)

  • Jin, Yeung-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.1-6
    • /
    • 2006
  • It is well known that pipelines have the highest capacity and are the safest and least environmentally disruptive form of transporting oil and gas. However, pipeline damage caused by both internal and external corrosion is a major concern threatening the reliability of oil and gas transportation and the soundness of the pipeline structure. In this study, we estimate the allowable damage by comparing the ASTM B31G code to a modified theory considering diverse detailed corrosive forms. The ASTM B31 G code has been developed as the evaluation method for reliability and incident prevention of damaged pipelines based on the amount of loss due to corrosion and the yield strength of materials. Furthermore, we suggest a method for estimating the expected life span of used pipelines by utilizing the reliability method based on major variables such as the depth and length of damage and the corrosion rate affecting the life expectancy of the pipelines.

Damage Type and Remaining Strength of Damaged Pipelines due to the Third Party Interference (외부장비에 의한 손상배관의 손상유형 및 잔류강도)

  • Kim, Young Pyo;Baek, Jong Hyun;Kim, Cheol Man;Kim, Woo Sik
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.2
    • /
    • pp.20-26
    • /
    • 2009
  • The dominant incidents category for onshore and offshore natural gas transmission pipelines in the world is associated with outside forces. Incidents in the outside forces category embrace acts of nature, which typically cause widespread structural damage, as well as act of man, whose effects tend to cause dents and/or gouges localized at point of contact that are referred to as mechanical damage. Therefore, these damage types must be better addressed to avoid unnecessary and costly repairs and the possibility of catastrophic events. First of all, the characterizing features of mechanical damage in gas pipelines were evaluated by using of excavator or boring machine. There is no reliable method for evaluating the safe operating pressure of pipeline affected by mechanical damage. It is especially important to evaluate the remaining strength of damaged pipelines due to outside force. Therefore, the full scale burst tests were conducted to evaluate the remaining strength of pipe with mechanical damage that combines a dent and a gouge. This paper is supposed to provide information that will assist in developing a criterion to assess serviceability in pipelines with mechanical damage.

  • PDF

An Evaluation of EOCS Regarding Safety Management Effects on Buried Gas Pipelines and Convenience of the Excavators and the Operators of Gas Companies

  • Ryon, Young-Don;Chae, Chung-Keun;Bang, Hyo-Jung;Yoon, Young-Kee;Lee, Su-Kyung
    • International Journal of Safety
    • /
    • v.6 no.2
    • /
    • pp.43-48
    • /
    • 2007
  • We introduced the Excavation One Call System (EOCS) as a pilot system, in Seoul, Korea. The system utilizes the phone and internet to transfer information about digging underground and buried gas pipelines, although currently written forms are used in accordance with the City Gas Business Law. After one year, we evaluated the business model by surveying the excavators and the operators of the gas companies. This paper shows that the EOCS was more effective in preventing the buried gas pipelines from being damaged than the existing method that has to use due form. It also shows that the EOCS was more convenient and cost efficient than the present policies in place. We come to the conclusion that the EOCS should be extended nationwide and gradually include other subsurface facilities.

A Study on the Failure Characteristics about Metropolitan Pipelines in Korea (국내(國內) 대도시(大都市) 수도관(水道管)의 파손특성(破損特性)에 관한 연구(硏究))

  • Lee, Hyun-Dong;An, Youn-Joo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.1
    • /
    • pp.96-111
    • /
    • 1996
  • The failure of water pipelines is progressed by several compound factors and the collection and analysis of data about pipeline failure are inevitable for effective pipeline rehabilitation. Data analysis of pipeline failure was already performed in USA and Europe. Based on such phenomena, failure characteristics about metropolitan pipelines in Korea were analyzed: The conclusions of this study are as followings. 1. The failure cause of pipelines can be classified into natural cause and artificial cause. Artificial cause is 32% of total causes, so artificial failure as several constructions happens frequently in Korea. Although the failure by old pipe is greatest of any other causes m classtfied cause, failure cause is not classified in detail now. 2. The damaged part of pipelines is affected by cities, distribution system inventory, bedding conditions, and so on. In this study, the failure of pipeline body(67%) is greater than the failure of pipeline joint(33%) in natural failure. 3. In regard to pipe materials, failure rate of DCIP(0.8456), PEP(0.7288), and GSP(0.6643) is greater than that of CIP(0.3985) and CWSP(0.2348). 4. Usually, faIlure rate is increased in proportion to diameter of pipeline. In this study, CIP, DCIP, and CWSP have clear trends. But the trends of PEP is reverse, the case of GSP, HP is obscure due to data shortage. 5. There are no direct relationships between burial age and failure rate of pipelines. 6. Annual breaks and winter(Nov.~Feb.) breaks of pipelines are investigated. As a result, WInter breaks to annual breaks of CIP is 51.3%(Seoul), 51.1%(Taegu),38.7%(Pusan). This phenomena have direct correlation with average winter temp. of cities.

  • PDF

Beam models for continuous pipelines passing through liquefiable regions

  • Adil Yigit
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.189-195
    • /
    • 2024
  • Buried pipelines can be classified as continuous and segmented pipelines. These infrastructures can be damaged either by ground movement or by seismic wave propagation during an earthquake. Permanent ground deformations (PGD) include surface faulting, liquefaction-induced lateral spreading and landslide. Liquefaction is a major problem for both superstructures and infrastructures. Buyukcekmece lake zone, which is the studied region in this paper, is a liquefaction prone area located near the North Anatolian Fault Line. It is an active fault line in Turkey and a major earthquake with a magnitude of around 7.5 is expected in this investigated region in Istanbul. It is planned to be constructed a new 12" steel natural gas pipeline from one side of the lake to the other side. In this study, this case has been examined in terms of two different support conditions. Firstly, it has been defined as a beam in liquefied soil and has built-in supports at both ends. In the other approach, this case has been modeled as a beam in liquefied soil and has vertical elastic pinned supports at both ends. These models have been examined and some solution proposals have been produced according to the obtained results. In this study, based on this sample, it is aimed to determine the behaviors of buried continuous pipelines subject to liquefaction effects in terms of buoyancy.

A Study on the Development and the Verification Experiment of ECDA Equipment (외면부식직접평가 장비 개발 및 실증 시험에 관한 연구)

  • Ryou, Young-Don;Lee, Jin-Han;Jung, Sung-Won;Park, Kyeong-Wan
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.72-81
    • /
    • 2016
  • When the coatings of buried steel pipelines are damaged, corrosion could be occurred on the surface of the damaged areas. Moreover the pinhole occurred by corrosion of pipelines may cause accidents due to gas leakage. To prevent these accidents, foreign countries including UK and USA have carried out coating defect detection on the buried gas pipelines by using a DCVG or a ACVG and have conducted direct assessment of pipelines through digging the ground, and if necessary, have repaired the pipelines. That is called ECDA i.e External Corrosion Direct Assessment which is regulated by NACE standards(SP 0502) and etc. In Korea, the ECDA provisions were included in KGS FS551 in 2014 when the regulations of Safety Validation in Detail for the medium-pressure piping were introduced. We have developed the equipment which can be used to detect external corrosion of the buried gas pipelines. We have also constructed pipeline test bed for empirical test of the developed equipment. In addition, we have carried out the verification experiments of the developed equipment on the test bed to demonstrate the performance of the equipment. The experiments were conducted by comparison tests of the developed equipment and other equipments which have been introduced and used in Korea. As the result, we have found the developed equipment is easier to use and has far superior performance compared to other equipment being used in Korea.

Feasibility Study on the Utilization of EMAT Technology for In-line Inspection of Gas Pipeline

  • Cho, Sung-Ho;Yoo, Hui-Ryong;Rho, Yong-Woo;Kim, Hak-Joon;Kim, Dae-Kwang;Song, Sung-Jin;Park, Gwan-Soo
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • If gas is leaking out of gas pipelines, it could cause a huge explosion. Accordingly, it is important to ensure the integrity of gas pipelines. Traditionally, over the years, gas-operating companies have used the ILI system, which is based on axial magnetic flux leakage (MFL), to inspect the gas pipelines. Relatively, there is a low probability of detection (POD) for the axial defects with the axial MFL-based ILI. To prevent the buried pipeline from corrosion, it requires a protective coating. In addition to the potential damage to the coating by environmental factors and external forces, there could be defects on the damaged coating area. Thus, it is essential that nondestructive evaluation methods for detecting axial defects (axial cracks, axial groove) and damaged coating be developed. In this study, an electromagnetic acoustic transducer (EMAT) sensor was designed and fabricated for detecting axial defects and coating disbondment. In order to validate the performances of the developed EMAT sensor, experiments were performed with specimens from axial cracks, axial grooves, and coating disbondment. The experimental results showed that the developed EMAT sensor could detect not only the axial cracks (minimum 5% depth of wall thickness) and axial grooves (minimum 10% depth of wall thickness), but also the coating disbondment.

Structural Analysis of Gas Pipeline Repaired by Carbon Fiber Composite Materials (탄소 섬유 복합재료로 보수된 가스 배관의 구조 해석)

  • Park, Sungho;Kim, Hansang
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.62-68
    • /
    • 2014
  • Composite repair methods besides welding methods such as surfacing and sleeve welding have been used as repair of damaged gas pipelines in foreign countries. Importance of safety management of city gas pipelines have been emphasized recently and our own repair manuals and codes for repair of city gas pipelines are required. It is right time to conduct research on the composite repair methods since the composite repair was introduced rather recently compared to the welding repair methods which have been investigated for long time. In this study, as a starting point of safety assessment of gas pipeline repaird by composite materials, structural analysis of gas pipeline repaired by carbon fiber composite materials was conducted using finite element analysis(FEA) method and the results was discussed.

A Study of Stress off City Gas Pipe Attached on the Bridge (교량에 부착된 도시가스 배관의 응력에 관한 연구)

  • Lee Su-Kyung;Lim Bong-Gwan
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.20-26
    • /
    • 2006
  • The survey team has conducted the on-the-site inspection of 53 bridges to which LNG gas pipelines are attached, to ascertain their level of safety, durability and any defect by adapting a method of computer data input process and precision analysis. In this way, we could estimate an effective corrective action on the defective gas pipelines found through this survey. Our survey team has analyzed carefully these 2 defective lines selectively out of 10 lines, which are considered to be most seriously weak. According to our elaborate analysis these two pipelines go over 70% of the set standard stress based on our Safety Manual Scale. We have taken corrective actions on these lines by repairing/replacing/obsolete damaged lines to ensure the distress of the bridges involved with the pipelines and could secure safety.

  • PDF