• Title/Summary/Keyword: Damaged Coastal Zone

Search Result 7, Processing Time 0.021 seconds

Report on the Field Excursion, 'Tsunami impact on the coastal zone of Thailand' ('태국 연안역의 지진해일 충격' 야외답사 보고)

  • CHANG SE WON;LEE HEE-IL;PARK YOUNG SOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.3
    • /
    • pp.171-180
    • /
    • 2005
  • Related to the tsunami impact caused by the 2004 Sumatra earthquake, field excursion of the title 'Tsunami impact on the coastal zone of Thailand' was carried out along the damaged coasts of Thailand fur three days. The damaged coastal zones along the Andaman Sea coasts of Thailand are classified into the severely damaged, the moderately damaged, and the slightly damaged coastal zone by the degree of damage. Channels of the river- mouths were widen, and the beach sands were eroded, transported, and then redeposited in the near shore or in the back beach area. Field excursion stops were 12 in the representative areas like Phang Nga province, the severely damaged coastal zone and Phuket Island, the slightly damaged coastal zone. In this report, the geo-logical effects on the coastal zone of Thailand by tsunami will be mainly illustrated by the satellite data before and after tsunami and the photographs taken during the field excursion.

Inundation Analysis on Coastal Zone around Masan Bay by Typhoon Maemi (No. 0314) (태풍 매미(0314호)에 의한 마산만 주변연안역에서의 범람해석)

  • Chun, Jae-Young;Lee, Kwang-Ho;Kim, Ji-Min;Kim, Do-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.8-17
    • /
    • 2008
  • Wrenching climatic changes due to ecocide and global wanning are producing a natural disaster. Coastal zones have been damaged by typhoons and accompanying storm surges. Severe waves, and destruction of the environment are adding to the severity of coastal disasters. There has been an increased interest in these coastal zone problems, and associated social confusion, after the loss of life and terrible property damage caused by typhoon Maemi. Especially if storm surges coincide with high ticks, the loss of life and property damage due to high waters are even worse. Therefore, it is desirable to accurately forecast not only the timing of storm surges but also the amount water level increase. Such forecasts are very important from the view point of coastal defense. In this study, using a numerical model, storm surge was simulated to examine its fluctuation characteristics for the coastal area behind Masan Bay, Korea. In the numerical model, a moving boundary condition was incorporated to explain wave run-up. Numerically predicted inundation regimes and depths were compared with measurements from a field survey. Comparisons of the numerical results and measured data show a very good correlation. The numerical model adapted in this study is expected to be a useful tool for analysis of storm surges, and for predicting inundation regimes due to coastal flooding by severe water waves.

Proposal for Wind Wave Damage Cost Estimation at the Southern Coastal Zone based on Disaster Statistics (재해통계기반 남해연안지역 풍랑피해액예측함수 제안)

  • Choo, Tai-Ho;Yun, Gwan-Seon;Kwon, Yong-Been;Park, Sang-Jin;Kim, Seong-Ryul
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.4
    • /
    • pp.267-274
    • /
    • 2017
  • The natural disasters such as typhoon, earthquake, flood, heavy rain, drought, sweltering heat, wind wave, tsunami and so on, are difficult to estimate the scale of damage and spot. Also, these disasters were being damaged to human life. However, if based on the disaster statistics the past damage cases are analyzed and the estimated damages can be calculated, the initial damage action can be taken immediately and based on the estimated damage scale the damage can be mitigated. In the present study, therefore, we proposed the functions of wind wave damage estimation for the southern coast. The functions are developed based on Disaster Report('91~'14) for wind wave and typhoon disaster statistics, regional characteristics and observed sea weather.

A Study on the Evaluation of the Environmental Performance of Salt Damage in Concrete Bridges under Marine Environment (해양 환경하 콘크리트 교량의 염해환경 성능평가 연구)

  • Chai, Won-Kyu;Lee, Myeong-Gu;Son, Young-Hyun;Hong, Sung-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.60-69
    • /
    • 2018
  • This study aims to investigate in the assessment of salt damage conditions in concrete structures under marine environment conditions. It aims also to improve the durability of new concrete bridge through applying the life prediction method of salt damaged bridges. As measuring chloride contents of these bridges on the southwest coastal area, it is shown that the average amount of chloride on these surfaces close to shore is $10.5kg/m^3$. This figure is much higher than that of the Standard Specification for Concrete($1.5kg/m^3{\sim}2.5kg/m^3$). In contrast, it is shown the average amount of chloride on these surfaces in tide zone is $13.1kg/m^3$. Its figure is much lower than that of the Standard Specification for Concrete($20kg/m^3$). And the life of bridges is estimated about 17 years. To improve the durability for salt damage, these bridges are applied to surface treatment method which the replacement rate of furnace slag is 60%. Under this condition, it is expected to be 110 years. Consequently, it is clear that the use of slag replacement rate, surface treatment agent, and anti-corrosion agent to control chloride penetration effects of a submerge-based concrete bridge will be required.

THE POTENTIAL OF SATELLITE REMOTE SENSING ON REDUCTION OF TSUNAMI DISASTER

  • Siripong, Absornsuda
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.52-55
    • /
    • 2006
  • It's used to be said that tsunami is a rare event. The recurrence time of tsunami in Sumatra area is approximately 230 years as CalTech Research Group‘s study from paleocoral. However, the tsunami occurred in Indian Ocean on 26 December 2004, 28 March 2005 and 17 July 2006, because the earthquakes still release the energy. To cope with the tsunami disaster, we have to put the much effort on better disaster preparedness. The Tsunami Reduction Of Impacts through three Key Actions (TROIKA) was suggested by Eddie N. Bernard, the director of NOAA/PMEL (Pacific Marine Environmental Laboratory). They are Hazard Assessment, Mitigation and Warning Guidance. The satellite remote sensing has potential on these actions. The medium and high resolution satellite data were used to assess the degree of damage at the six-damaged provinces on the Andaman seacoast of Thailand. Fast and reliable interpretation of the damage by remote sensing method can be used for inundation mapping, rehabilitation and housing plans for the victims. For tsunami mitigation, the satellite data can be used with GIS to construct the evacuation map (evacuation route and refuge site) and coastal zone management. It is also helpful for educational program for local residents and school systems. Tsunami is a kind of ocean wave, therefore any satellite sensors such as SAR, Altimeter, MODIS, Landsat, SPOT, IKONOS can detect the tsunami wave in 2004. The satellite images have shown the characteristics of tsunami wave approaching the coast. For warning, satellite data has potential for early warning to detect the tsunami wave in deep ocean, if there are enough satellite constellation to monitor and detect the first tsunami wave like the pressure gauge, seismograph and tide gauge with the DART buoy can do. Moreover, the new methods should be developed to analyse the satellite data more faster for early warning procedure.

  • PDF

Experimental Study on Irregular Wave Forces Acting on a Marker Rock Installed on a Submerged Breakwater (수중방파제 천단상의 표식암에 작용하는 불규칙파의 파력특성에 관한 실험적 연구)

  • Hur, Dong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.413-420
    • /
    • 2006
  • The construction of a submerged breakwater has become increasing due to their multiple effects on the coastal zone. Recently, marker rocks have been installed on the submerged breakwater to indicate its position to the vessels instead of buoy systems, since a buoy is not only improper for the ocean view, but also its mooring system may be damaged by the impulsive wave force caused by wave breaking on the breakwater. The accurate estimation of wave forces on such rocks is deemed necessary for their stability design. In this study, the characteristics of irregular wave forces acting on a marker rock, which was installed on a submerged breakwater, was investigated on the basis of laboratory experiments. It was revealed that the dimensionless highest one-third wave force tends to decrease with increasing the installation distance of a marker rock from the leading crown edge of a submerged breakwater. Also, the drag and inertia coefficients for irregular wave forces, which were obtained using the Morison equation, were investigated in relation to K.C. number.

Study of flood prevention alternative priorities using MCDM (Multi-Criteria Decision Making) (MCDM을 이용한 홍수방어대안 우선순위 정립에 관한 연구)

  • Lim, Donghwa;Jeong, Soonchan;Lee, Eunkyung;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.169-179
    • /
    • 2017
  • Recently, due to global warming and climate change in Korea, local heavy storm occurs frequently. In this study, the risky areas for flooding in urban areas are analyzed for flood inundation based on two-dimensional urban flood runoff model (XP-SWMM) focusing on coastal high flood-risk urban areas. In addition, the MCDM (Multi-Criteria Decision Making) technique is utilized in order to establish the flood defense structural measures. The alternative flood reduction method are compared and the optimum flood defense measures are selected. A simulation model was used with three structural flood prevention measures (drainage pipe construction, water detention, flood pumping station). In order to decrease the flooding area, flood assessment criteria are suggested (flooded area, maximum inundation depth, damaged residential area, construction cost). Priorities of alternatives are determined by using compromise programming. As a result, the optimal flood defence alternative suggested for Janghang Zone 1 is flood pumping station and for Janghang Zone 2, 3 are drainage pipe construction.