• 제목/요약/키워드: Damage-Function Approach

검색결과 131건 처리시간 0.023초

열피로 해석시 응력전달함수에 미치는 열적 재료 성질의 영향 (Effect of Thermophysical Properties on Stress Transfer Function ofr Thermal Fatigue Analysis)

  • 김영진;석창성;박종주
    • 대한기계학회논문집A
    • /
    • 제20권1호
    • /
    • pp.172-179
    • /
    • 1996
  • For mechanical systems operating at high tempertature, thermal fatigue phenomenon has been recognized as a major cause of mechanical component failures. To evaluate cumulative fatigue damage as a conesquence of thermal fatugue on real time, the stress tranfer function(Green's function) approach is popularly used. The objective of this paper is to investigate the effect of thermophsical properties on the stress tranfer function. For this purpose a modified Green's function approach considering temperature-dependent thermophysical properties is proposed. Two case studies were performed and the proposed approach agrees well with full finite element analysis.

온도 의존적 재료물성치를 고려한 개선된 그린함수 기반 열응력 계산 (Thermal Stress Calculations Using Enhanced Green's Function Considering Temperature-dependent Material Properties)

  • 한태송;허남수;전현익;하승우;조선영
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.535-540
    • /
    • 2015
  • We propose an enhanced Green's function approach to predict thermal stresses by considering temperature-dependent material properties. We introduce three correction factors for the maximum stress, the time taken to reach maximum stress, and the time required to attain steady state based on the Green's function results for each temperature. The proposed approach considers temperature-dependent material properties using correction factors, which are defined as polynomial expressions with respect to temperatures based on Green's functions, that we obtain from finite-element (FE) analyses at each temperature. We verify the proposed approach by performing detailed FE analyses on thermal transients. The Green's functions predicted by the proposed approach are in good agreement with those obtained from FE analyses for all temperatures. Moreover, the thermal stresses predicted using the proposed approach are also in good agreement with the FE results, and the proposed approach provides better predictions than the conventional Green's function approach using constant, time-independent material properties.

최소기대비용에 기초한 교량의 최적내진신뢰성 (Optimal Seismic Reliability of Bridges Based on Minimum Expected Life Cycle Costs)

  • 조효남;임종권;심성택
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.249-256
    • /
    • 1999
  • This study is intended to propose a systematic procedure for the development of the reliability-based seismic safety and cost-effective Performance criteria for design and upgrading of long span PC bridges. In the paper, a set of cost function models for life cycle cost analysis of bridges is proposed. The total life cycle cost functions consist of initial cost and direct/indirect damage costs considering repair/replacement costs, human losses and property damage costs, road user costs, and indirect regional economic losses. The damage costs are successfully expressed in terms of Park-Ang median global damage indices and damage probabilities. The proposed approach is successfully applied to model bridges in both regions of a moderate seismicity area like Seoul, Korea and a high one like Tokyo, Japan. It may be expected that the proposed approach can be effectively utilized for the development of cost-effective performance criteria for design and upgrading of various types of bridges as well as long span PC bridges.

  • PDF

Damage detection in beams and plates using wavelet transforms

  • Rajasekaran, S.;Varghese, S.P.
    • Computers and Concrete
    • /
    • 제2권6호
    • /
    • pp.481-498
    • /
    • 2005
  • A wavelet based approach is proposed for structural damage detection in beams, plate and delamination of composite plates. Wavelet theory is applied here for crack identification of a beam element with a transverse on edge non-propagating open crack. Finite difference method was used for generating a general displacement equation for the cracked beam in the first example. In the second and third example, damage is detected from the deformed shape of a loaded simply supported plate applying the wavelet theory. Delamination in composite plate is identified using wavelet theory in the fourth example. The main concept used is the breaking down of the dynamic signal of a structural response into a series of local basis function called wavelets, so as to detect the special characteristics of the structure by scaling and transformation property of wavelets. In the light of the results obtained, limitations of the proposed method as well as suggestions for future work are presented. Results show great promise of wavelet approach for damage detection and structural health monitoring.

Comparative analysis of fatigue assessment considering hydroelastic response using numerical and experimental approach

  • Kim, Beom-il;Jung, Byung-hoon
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.355-365
    • /
    • 2020
  • In this study, considering the hydroelastic response represented by the springing and whipping phenomena, we propose a method of estimating the fatigue damage in the longitudinal connections of ships. First, we screened the design sea states using a load transfer function based on the frequency domain. We then conducted a time domain fluid-structure interaction (FSI) analysis using WISH-FLEX, an in-house code based on the weakly nonlinear approach. To obtain an effective and robust analytical result of the hydroelastic response, we also conducted an experimental model test with a 1/50-scale backbone-based model of a ship, and compared the experimental results with those obtained from the FSI analysis. Then, by combining the results obtained from the hydroelastic response with those obtained from the numerical fatigue analysis, we developed a fatigue damage estimation method. Finally, to demonstrate the effectiveness of the developed method, we evaluated the fatigue strength for the longitudinal connections of the real ship and compared it with the results obtained from the model tests.

DEVELOPMENT OF GREEN'S FUNCTION APPROACH CONSIDERING TEMPERATURE-DEPENDENT MATERIAL PROPERTIES AND ITS APPLICATION

  • Ko, Han-Ok;Jhung, Myung Jo;Choi, Jae-Boong
    • Nuclear Engineering and Technology
    • /
    • 제46권1호
    • /
    • pp.101-108
    • /
    • 2014
  • About 40% of reactors in the world are being operated beyond design life or are approaching the end of their life cycle. During long-term operation, various degradation mechanisms occur. Fatigue caused by alternating operational stresses in terms of temperature or pressure change is an important damage mechanism in continued operation of nuclear power plants. To monitor the fatigue damage of components, Fatigue Monitoring System (FMS) has been installed. Most FMSs have used Green's Function Approach (GFA) to calculate the thermal stresses rapidly. However, if temperature-dependent material properties are used in a detailed FEM, there is a maximum peak stress discrepancy between a conventional GFA and a detailed FEM because constant material properties are used in a conventional method. Therefore, if a conventional method is used in the fatigue evaluation, thermal stresses for various operating cycles may be calculated incorrectly and it may lead to an unreliable estimation. So, in this paper, the modified GFA which can consider temperature-dependent material properties is proposed by using an artificial neural network and weight factor. To verify the proposed method, thermal stresses by the new method are compared with those by FEM. Finally, pros and cons of the new method as well as technical findings from the assessment are discussed.

구조물의 결함 규명을 위한 위상최적설계 기법의 적용가능성 연구 (A Feasibility Study on the Application of the Topology Optimization Method for Structural Damage Identification)

  • 이중석;김재은;김윤영
    • 한국소음진동공학회논문집
    • /
    • 제16권2호
    • /
    • pp.115-123
    • /
    • 2006
  • A feasibility of using the topology optimization method for structural damage identification is investigated for the first time. The frequency response functions (FRFs) are assumed to be constructed by the finite element models of damaged and undamaged structures. In addition to commonly used resonances, antiresonances are employed as the damage identifying modal parameters. For the topology optimization formulation, the modal parameters of the undamaged structure are made to approach those of the damaged structure by means of the constraint equations, while the objective function is an explicit penalty function requiring clear black-and-white images. The developed formulation is especially suitable for damage identification problems dealing with many modal parameters. Although relatively simple numerical problems were considered in this investigation, the possibility of using the topology optimization method for structural damage identification is suggested through this research.

구조 수명간 지진위험도를 고려한 연속 PSC교의 LCC 최적 내진설계 (Optimum Life-Cycle Cost-Effective Seismic Design for Continuous PSC Bridges Considering Lifetime Expected Seismic Risks)

  • 조효남;이광민;박경훈;김평석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.720-723
    • /
    • 2004
  • This study is intended to propose a systematic approach for determining optimum Life-Cycle Cost (LCC)-effective seismic design for continuous PSC bridges considering lifetime expected seismic risks. In the paper, a set of cost function for LCC analysis of bridges is proposed. The total LCC functions consist of initial cost and direct/indirect damage costs considering repair/replacement costs, human losses and property damage costs, road user costs, and indirect socio-economic losses. The damage costs are expressed in terms of Park-Ang median global damage indices (Park and Ang, 1985) and lifetime damage probabilities. The proposed approach is applied to model bridges of both moderate seismicity regions like Korea and high seismicity regions like Japan. Since, in case of bridges, a number of parameters may have an influence on optimal target reliability, various sensitivity analyses are performed in this study. It may be expected that the proposed approach can be effectively utilized for the development of cost-effective performance criteria for design and upgrading of various types of bridges as well as continuous PC bridges.

  • PDF

A vibration-based approach for detecting arch dam damage using RBF neural networks and Jaya algorithms

  • Ali Zar;Zahoor Hussain;Muhammad Akbar;Bassam A. Tayeh;Zhibin Lin
    • Smart Structures and Systems
    • /
    • 제32권5호
    • /
    • pp.319-338
    • /
    • 2023
  • The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.

A decentralized approach to damage localization through smart wireless sensors

  • Jeong, Min-Joong;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • 제5권1호
    • /
    • pp.43-54
    • /
    • 2009
  • This study introduces a novel approach for locating damage in a structure using wireless sensor system with local level computational capability to alleviate data traffic load on the centralized computation. Smart wireless sensor systems, capable of iterative damage-searching, mimic an optimization process in a decentralized way. The proposed algorithm tries to detect damage in a structure by monitoring abnormal increases in strain measurements from a group of wireless sensors. Initially, this clustering technique provides a reasonably effective sensor placement within a structure. Sensor clustering also assigns a certain number of master sensors in each cluster so that they can constantly monitor the structural health of a structure. By adopting a voting system, a group of wireless sensors iteratively forages for a damage location as they can be activated as needed. Since all of the damage searching process occurs within a small group of wireless sensors, no global control or data traffic to a central system is required. Numerical simulation demonstrates that the newly developed searching algorithm implemented on wireless sensors successfully localizes stiffness damage in a plate through the local level reconfigurable function of smart sensors.