• 제목/요약/키워드: Damage probability

검색결과 586건 처리시간 0.024초

재해기상 언론기사 빅데이터를 활용한 피해정보 자동 분류기 개발 (Developing and Evaluating Damage Information Classifier of High Impact Weather by Using News Big Data)

  • 조수지;이기광
    • 산업경영시스템학회지
    • /
    • 제46권3호
    • /
    • pp.7-14
    • /
    • 2023
  • Recently, the importance of impact-based forecasting has increased along with the socio-economic impact of severe weather have emerged. As news articles contain unconstructed information closely related to the people's life, this study developed and evaluated a binary classification algorithm about snowfall damage information by using media articles text mining. We collected news articles during 2009 to 2021 which containing 'heavy snow' in its body context and labelled whether each article correspond to specific damage fields such as car accident. To develop a classifier, we proposed a probability-based classifier based on the ratio of the two conditional probabilities, which is defined as I/O Ratio in this study. During the construction process, we also adopted the n-gram approach to consider contextual meaning of each keyword. The accuracy of the classifier was 75%, supporting the possibility of application of news big data to the impact-based forecasting. We expect the performance of the classifier will be improve in the further research as the various training data is accumulated. The result of this study can be readily expanded by applying the same methodology to other disasters in the future. Furthermore, the result of this study can reduce social and economic damage of high impact weather by supporting the establishment of an integrated meteorological decision support system.

Seismic fragility assessment of shored mechanically stabilized earth walls

  • Sheida Ilbagitaher;Hamid Alielahi
    • Geomechanics and Engineering
    • /
    • 제36권3호
    • /
    • pp.277-293
    • /
    • 2024
  • Shored Mechanically Stabilized Earth (SMSE) walls are types of soil retaining structures that increase soil stability under static and dynamic loads. The damage caused by an earthquake can be determined by evaluating the probabilistic seismic response of SMSE walls. This study aimed to assess the seismic performance of SMSE walls and provide fragility curves for evaluating failure levels. The generated fragility curves can help to improve the seismic performance of these walls through assessing and controlling variables like backfill surface settlement, lateral deformation of facing, and permanent relocation of the wall. A parametric study was performed based on a non-linear elastoplastic constitutive model known as the hardening soil model with small-strain stiffness, HSsmall. The analyses were conducted using PLAXIS 2D, a Finite Element Method (FEM) program, under plane-strain conditions to study the effect of the number of geogrid layers and the axial stiffness of geogrids on the performance of SMSE walls. In this study, three areas of damage (minor, moderate, and severe) were observed and, in all cases, the wall has not completely entered the stage of destruction. For the base model (Model A), at the highest ground acceleration coefficient (1 g), in the moderate damage state, the fragility probability was 76%. These values were 62%, and 54%, respectively, by increasing the number of geogrids (Model B) and increasing the geogrid stiffness (Model C). Meanwhile, the fragility values were 99%, 98%, and 97%, respectively in the case of minor damage. Notably, the probability of complete destruction was zero percent in all models.

다수기 PSA 수행을 위한 새로운 정량화 방법 (A New Quantification Method for Multi-Unit Probabilistic Safety Assessment)

  • 박성규;정우식
    • 한국안전학회지
    • /
    • 제35권1호
    • /
    • pp.97-106
    • /
    • 2020
  • The objective of this paper is to suggest a new quantification method for multi-unit probabilistic safety assessment (PSA) that removes the overestimation error caused by the existing delete-term approximation (DTA) based quantification method. So far, for the actual plant PSA model quantification, a fault tree with negates have been solved by the DTA method. It is well known that the DTA method induces overestimated core damage frequency (CDF) of nuclear power plant (NPP). If a PSA fault tree has negates and non-rare events, the overestimation in CDF drastically increases. Since multi-unit seismic PSA model has plant level negates and many non-rare events in the fault tree, it should be very carefully quantified in order to avoid CDF overestimation. Multi-unit PSA fault tree has normal gates and negates that represent each NPP status. The NPP status means core damage or non-core damage state of individual NPPs. The non-core damage state of a NPP is modeled in the fault tree by using a negate (a NOT gate). Authors reviewed and compared (1) quantification methods that generate exact or approximate Boolean solutions from a fault tree, (2) DTA method generating approximate Boolean solution by solving negates in a fault tree, and (3) probability calculation methods from the Boolean solutions generated by exact quantification methods or DTA method. Based on the review and comparison, a new intersection removal by probability (IRBP) method is suggested in this study for the multi-unit PSA. If the IRBP method is adopted, multi-unit PSA fault tree can be quantified without the overestimation error that is caused by the direct application of DTA method. That is, the extremely overestimated CDF can be avoided and accurate CDF can be calculated by using the IRBP method. The accuracy of the IRBP method was validated by simple multi-unit PSA models. The necessity of the IRBP method was demonstrated by the actual plant multi-unit seismic PSA models.

Hazus-MH 방법을 이용한 대구시 교량의 시나리오 지진에 의한 피해 예측 (Scenario-Based Earthquake Damage Estimation of Bridge Structures in Daegu City Using Hazus-MH Methodology)

  • 김시윤;김승직;장준호
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.89-96
    • /
    • 2018
  • The paper presents the damage estimation of bridge structures in Daegu city based on the scenario-based earthquakes. Since the fragility curves for domestic bridge strucures are limited, the Hazus methodology is employed to derive the fragility curves and estimate the damage. A total of four earthuquake scenarios near Daegu city are assumed and structure damage is investigated for 81 bridge structures. The seismic fragility function and damage level of each bridge had adopted from the analytical method in HAZUS and then, the damage probability using seismic fragility function for each bridge was evaluated. It was concluded that the seismic damage to bridges was higher when the magnitude of the earthquake was large or nearer to the epicenter.

고정목표 공격을 위한 최적 항공기 할당모형에 관한 연구 (A Study of Optimal Aircraft Allocation Model for Attacking Fixed Target)

  • 허종준;김충영
    • 한국국방경영분석학회지
    • /
    • 제12권2호
    • /
    • pp.22-36
    • /
    • 1986
  • The study is to design optimal aircraft allocation model for sufficing the required level of damage, minimizing attrition cost when the aircrafts attack the enemy's fixed target. When friendly aircraft attacks enemy target, the aircraft will suffer the loss due to the enemy's anti-aircraft weapons and aircraft. For this study, it is required that the probability of target damage by the type of aircraft, level of target damage and attrition cost are computed for the application of this model.

  • PDF

일 최대풍속의 추정확률분포에 의한 농작물 강풍 피해 위험도 판정 방법 (Prediction of Wind Damage Risk based on Estimation of Probability Distribution of Daily Maximum Wind Speed)

  • 김수옥
    • 한국농림기상학회지
    • /
    • 제19권3호
    • /
    • pp.130-139
    • /
    • 2017
  • 기상청 동네예보 풍속으로부터 농작물의 강풍피해를 예측하기 위해, 방재기상관측지점 19곳의 2012년 풍속자료를 이용하여 기상청 동네예보의 3시간 간격과 동일한 0000, 0300 ${\cdots}$ 2100 시간대의 풍속과 직전 3시간 동안의 최대풍속 간의 관계를 직선회귀식으로 표현하였다. 매 3시간 마다 추정된 최대풍속 중 가장 큰 값을 일 최대풍속으로 간주하고, 이 때의 추정오차를 정규분포와 Weibull 분포 확률밀도함수로 표현하였다. 또한 일 최대풍속과 작물 피해 임계풍속 간의 편차를 추정오차 기반 확률 분포에 적용하여 확률누적값으로 풍해 '주의보'와 '경보' 단계를 설정하였다. 19지점별 최대풍속 추정 회귀계수(a, b)와 추정오차의 표준편차 및 Weibull 분포의 모수(${\alpha}$, ${\beta}$)는 공간내삽하여 분포도로 작성하고 종관기상관측지점 4곳(순천, 남원, 임실, 장수)의 격자값을 추출하였다. 이를 이용해 2012년의 일 최대풍속을 추정하고, 배 만삼길 품종의 낙과 발생 사례에서 제시된 풍속 10m/s를 낙과 임계풍속으로 간주, 풍해 주의보와 경보를 판정하였다. 그 결과, 최대풍속 추정오차를 Weibull 분포로 표현하여 풍해 위험 정도를 판정하는 것이 정규분포만을 이용하는 것보다 더 현장에 정확한 주의보를 발령할 수 있었다.

Windborne debris risk analysis - Part I. Introduction and methodology

  • Lin, Ning;Vanmarcke, Erik
    • Wind and Structures
    • /
    • 제13권2호
    • /
    • pp.191-206
    • /
    • 2010
  • Windborne debris is a major cause of structural damage during severe windstorms and hurricanes owing to its direct impact on building envelopes as well as to the 'chain reaction' failure mechanism it induces by interacting with wind pressure damage. Estimation of debris risk is an important component in evaluating wind damage risk to residential developments. A debris risk model developed by the authors enables one to analytically aggregate damage threats to a building from different types of debris originating from neighboring buildings. This model is extended herein to a general debris risk analysis methodology that is then incorporated into a vulnerability model accounting for the temporal evolution of the interaction between pressure damage and debris damage during storm passage. The current paper (Part I) introduces the debris risk analysis methodology, establishing the mathematical modeling framework. Stochastic models are proposed to estimate the probability distributions of debris trajectory parameters used in the method. It is shown that model statistics can be estimated from available information from wind-tunnel experiments and post-damage surveys. The incorporation of the methodology into vulnerability modeling is described in Part II.

국부손상을 이용한 RC교각의 지진위험도 분석 (Seismic Risk Analysis of Reinforced Concrete Bridge Piers using Local Damage)

  • 이대형;김현준;박창규;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.194-197
    • /
    • 2006
  • This study represents results of fragility curve development for 4-span continuous bridge. 2 type bridge model is chosen frame type and 2-roller 1-hinge type. To research the response of bridge under earthquake excitation, Monte Carlo simulation is performed to study nonlinear dynamic analysis. For nonlinear time history analysis a set of 150 synthetic time histories were generated. Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA. Five damage states were defined to express the condition of damage based on the actual experimental damage data of bridge column. As a result of this research, the value of damage probability corresponding to each damage state were determined and frame type bridge are favorable under seismic event.

  • PDF

확률모형을 이용한 정보보호 투자 포트폴리오 분석 (Probabilistic Modeling for Evaluation of Information Security Investment Portfolios)

  • 양원석;김태성;박현민
    • 한국경영과학회지
    • /
    • 제34권3호
    • /
    • pp.155-163
    • /
    • 2009
  • We develop a probability model to evaluate information security investment portfolios. We assume that organizations install portfolios of information security countermeasures to mitigate the damage such as loss of the transaction being processed, damage of hardware and data, etc. A queueing model and Its expected value analysis are used to derive the lost cost of transactions being processed, the replacement cost of hardwares, and the recovery cost of data. The net present value for each portfolio is derived and organizations can select the optimal information security investment portfolio by comparing portfolios.

홍수 예.경보 체계 개발을 위한 연구 - 화옹호 유역의 유역 확률홍수량 산정 - (Computing Probability Flood Runoff for Flood Forecasting & Warning System - Computing Probability Flood Runoff of Hwaong District -)

  • 김상호;김한중;홍성구;박창언;이남호
    • 한국농공학회논문집
    • /
    • 제49권4호
    • /
    • pp.23-31
    • /
    • 2007
  • The objective of the study is to prepare input data for FIA (Flood Inundation Analysis) & FDA (Flood Damage Assessment) through rainfall-runoff simulation by HEC-HMS model. For HwaOng watershed (235.6 $km^{2}$), HEC-HMS was calibrated using 6 storm events. Geospatial data processors, HEC-GeoHMS is used for HEC-HMS basin input data. The parameters of rainfall loss rate and unit hydrograph are optimized from the observed data. HEC-HMS was applied to simulate rainfall-runoff relation to frequency storm at the HwaOng watershed. The results will be used for mitigating and predicting the flood damage after river routing and inundation propagation analysis through various flood scenarios.