• 제목/요약/키워드: Damage mode

검색결과 797건 처리시간 0.025초

A new damage detection indicator for beams based on mode shape data

  • Yazdanpanah, O.;Seyedpoor, S.M.;Bengar, H. Akbarzadeh
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.725-744
    • /
    • 2015
  • In this paper, a new damage indicator based on mode shape data is introduced to identify damage in beam structures. In order to construct the indicator proposed, the mode shape, mode shape slope and mode shape curvature of a beam before and after damage are utilized. Mode shape data of the beam are first obtained here using a finite element modeling and then the slope and curvature of mode shape are evaluated via the central finite difference method. In order to assess the robustness of the proposed indicator, two test examples including a simply supported beam and a two-span beam are considered. Numerical results demonstrate that using the proposed indicator, the location of single and multiple damage cases having different characteristics can be accurately determined. Moreover, the indicator shows a better performance when compared with a well-known indicator found in the literature.

A direct damage detection method using Multiple Damage Localization Index Based on Mode Shapes criterion

  • Homaei, F.;Shojaee, S.;Amiri, G. Ghodrati
    • Structural Engineering and Mechanics
    • /
    • 제49권2호
    • /
    • pp.183-202
    • /
    • 2014
  • A new method of multiple damage detection in beam like structures is introduced. The mode shapes of both healthy and damaged structures are used in damage detection process (DDP). Multiple Damage Localization Index Based on Mode Shapes (MDLIBMS) is presented as a criterion in detecting damaged elements. A finite element modeling of structures is used to calculate the mode shapes parameters. The main advantages of the proposed method are its simplicity, flexibility on the number of elements and so the accuracy of the damage(s) position(s), sensitivity to small damage extend, capability in prediction of required number of mode shapes and low sensitivity to noisy data. In fact, because of differential and comparative form of MDLIBMS, using noise polluted data doesn't have major effect on the results. This makes the proposed method a powerful one in damage detection according to measured mode shape data. Because of its flexibility, damage detection process in multi span bridge girders with non-prismatic sections can be done by this method. Numerical simulations used to demonstrate these advantages.

Study of the structural damage identification method based on multi-mode information fusion

  • Liu, Tao;Li, AiQun;Ding, YouLiang;Zhao, DaLiang
    • Structural Engineering and Mechanics
    • /
    • 제31권3호
    • /
    • pp.333-347
    • /
    • 2009
  • Due to structural complicacy, structural health monitoring for civil engineering needs more accurate and effectual methods of damage identification. This study aims to import multi-source information fusion (MSIF) into structural damage diagnosis to improve the validity of damage detection. Firstly, the essential theory and applied mathematic methods of MSIF are introduced. And then, the structural damage identification method based on multi-mode information fusion is put forward. Later, on the basis of a numerical simulation of a concrete continuous box beam bridge, it is obviously indicated that the improved modal strain energy method based on multi-mode information fusion has nicer sensitivity to structural initial damage and favorable robusticity to noise. Compared with the classical modal strain energy method, this damage identification method needs much less modal information to detect structural initial damage. When the noise intensity is less than or equal to 10%, this method can identify structural initial damage well and truly. In a word, this structural damage identification method based on multi-mode information fusion has better effects of structural damage identification and good practicability to actual structures.

Periodic-Cell Simulations for the Microscopic Damage and Strength Properties of Discontinuous Carbon Fiber-Reinforced Plastic Composites

  • Nishikawa, M.;Okabe, T.;Takeda, N.
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.77-93
    • /
    • 2009
  • This paper investigated the damage transition mechanism between the fiber-breaking mode and the fiber-avoiding crack mode when the fiber-length is reduced in the unidirectional discontinuous carbon fiber-reinforced-plastics (CFRP) composites. The critical fiber-length for the transition is a key parameter for the manufacturing of flexible and high-strength CFRP composites with thermoset resin, because below this limit, we cannot take full advantage of the superior strength properties of fibers. For this discussion, we presented a numerical model for the microscopic damage and fracture of unidirectional discontinuous fiber-reinforced plastics. The model addressed the microscopic damage generated in these composites; the matrix crack with continuum damage mechanics model and the fiber breakage with the Weibull model for fiber strengths. With this numerical model, the damage transition behavior was discussed when the fiber length was varied. The comparison revealed that the length of discontinuous fibers in composites influences the formation and growth of the cluster of fiber-end damage, which causes the damage mode transition. Since the composite strength is significantly reduced below the critical fiber-length for the transition to fiber-avoiding crack mode, we should understand the damage mode transition appropriately with the analysis on the cluster growth of fiber-end damage.

Locating cracks in RC structures using mode shape-based indices and proposed modifications

  • Fayyadh, Moatasem M.;Razak, Hashim Abdul
    • Advances in Computational Design
    • /
    • 제7권1호
    • /
    • pp.81-98
    • /
    • 2022
  • This study presents the application of two indices for the locating of cracks in Reinforced Concrete (RC) structures, as well as the development of their modified forms to overcome limitations. The first index is based on mode shape curvature and the second index is based on the fourth derivative of the mode shape. In order to confirm the indices' effectiveness, both eigenvalues coupled with nonlinear static analyses were carried out and the eigenvectors for two different damage locations and intensities of load were obtained from the finite element model of RC beams. The values of the damage-locating indices derived using both indices were then compared. Generally, the mode shape curvature-based index suffered from insensitivity when attempting to detect the damage location; this also applied to the mode shape fourth derivative-based index at lower modes. However, at higher modes, the mode shape fourth derivative-based index gave an acceptable indication of the damage location. Both the indices showed inconsistencies and anomalies at the supports. This study proposed modification to both indices to overcome identified flaws. The results proved that modified forms exhibited better sensitivity for identifying the damage location. In addition, anomalies at the supports were eliminated.

층강성 손상비를 이용한 전단형 건물의 손상위치 추정에 관한 연구 (Study on The Damage Location Detection of Shear Building Structures Using The Degradation Ratio of Story Stiffness)

  • 유석형
    • 대한건축학회논문집:구조계
    • /
    • 제34권2호
    • /
    • pp.3-10
    • /
    • 2018
  • Damage location and extent of structure could be detected by the inverse analysis on dynamic response properties such as frequencies and mode shapes. In practice the measured difference of natural frequencies represent the stiffness change reliably, however the measured mode shape is insensitive for stiffness change, but provides spatial information of damage. The damage detection index on shear building structures is formulated in this study. The damage detection index could be estimated from mode shape and srory stiffness of undamaged structure and frequency difference between undamaged and damaged structure. For the verification of the observed damage detection method, the numerical analysis of Matlab and MIDAS and shacking table test were performed. In results, the damage index of damaged story was estimated so higher than undamaged stories that indicates the damaged story apparently.

강부재의 손상발견을 위한 모달실험 기법 (Damage Detection of a Steel Member Using Modal Testing)

  • 장정환;이정휘;김성곤;장승필
    • 한국강구조학회 논문집
    • /
    • 제9권4호통권33호
    • /
    • pp.467-477
    • /
    • 1997
  • 모달실험 기법의 강부재 손상발견 적용성에 대한 실험적 연구를 수행하였다. 단경간 및 2경간 강재보에 손상을 모사한 단계적인 절단을 가하면서 모달실험을 반복하고, 손상 정도에 따른 모달 파라미터의 변화를 관찰하였으며, 실험 결과를 검증할 목적으로 수치해석을 병행하였다. 고려한 모달 파라미터는 고유진동수(Frequency), 변위 모드형상(Displacement Mode Shape), 변형률 모드형상(Strain Mode Shape)이며, 이들 모달 파라미터를 구하기 위하여 가속도계와 변형률계를 사용한 모달실험을 실시하였다. 각각의 손상단계에서 손상에 의한 변위 모드형상과 변형률 모드형상의 변화를 위치에 대해 정량적으로 나타내기 위하여, CoMAC과 Modal Vector Error를 사용하였다. 고유진동수는 손상의 정도가 심해짐에 따라 감소하는 경향을 보였으며, 손상의 위치를 발견하는 데에 가장 효과적으로 사용될 수 있는 것은 변형률 모드형상이었다.

  • PDF

유리침윤 알루미나 및 스핀넬 복합체에 관한 연구 I. 미세구조 및 유리함량이 접촉손상 및 강동에 미치는 영향 (A Study on Glass-Infiltrated Alumina and Spinel Composite I. Effect of Microstructure and Glass Content on Contant Damage and Strength)

  • 정연길;최성철
    • 한국세라믹학회지
    • /
    • 제35권7호
    • /
    • pp.671-678
    • /
    • 1998
  • Hertzian indentation tests with sphere indenters were used to study the mechanical properties of glass-in-filtrated alumina and spinel composites and evaluated the effect of preform microstructure and evaluated the effect of preform microstructure and glass con-tents on contanct damage and strength. The spinel composite showed more brittle behavior than the alumina composite which is verified from indentation stress-strain curve cone cracks and quasi-plastic deformation developed at subsurface. Failure originated from either cone cracks(brittle mode) or deformation zone(quasi-plastic mode) above critical load for cracking(Pc) and yield ({{{{ {P }_{Y } }}) with the brittle mode more dominant in the spinels and the quasi-plastic mode more dominant in the aluminas. Even though brittle mode was dominant in the spinel composites the strength degradation from accumulation of damage above these critical loads was conspicuously small suggesting that the glass-infiltrated composites should be highly damage tolerant to the blunt contacts.

  • PDF

Delamination identification of laminated composite plates using measured mode shapes

  • Xu, Yongfeng;Chen, Da-Ming;Zhu, Weidong;Li, Guoyi;Chattopadhyay, Aditi
    • Smart Structures and Systems
    • /
    • 제23권2호
    • /
    • pp.195-205
    • /
    • 2019
  • An accurate non-model-based method for delamination identification of laminated composite plates is proposed in this work. A weighted mode shape damage index is formulated using squared weighted difference between a measured mode shape of a composite plate with delamination and one from a polynomial that fits the measured mode shape of the composite plate with a proper order. Weighted mode shape damage indices associated with at least two measured mode shapes of the same mode are synthesized to formulate a synthetic mode shape damage index to exclude some false positive identification results due to measurement noise and error. An auxiliary mode shape damage index is proposed to further assist delamination identification, by which some false negative identification results can be excluded and edges of a delamination area can be accurately and completely identified. Both numerical and experimental examples are presented to investigate effectiveness of the proposed method, and it is shown that edges of a delamination area in composite plates can be accurately and completely identified when measured mode shapes are contaminated by measurement noise and error. In the experimental example, identification results of a composite plate with delamination from the proposed method are validated by its C-scan image.

고유진동수 이용 손상추정법과 모드형상 이용 손상추정법에 의한 PSC 보의 비파괴 손상검색 (Nondestructive Damage Detection in PSC Beams : Frequency-Based Method Versus Mode-Shape-Based Method)

  • 김정태;류연선;조현만
    • 한국전산구조공학회논문집
    • /
    • 제15권1호
    • /
    • pp.43-58
    • /
    • 2002
  • PSC 보의 비파괴 손상검색을 위한 고유진동수 이용 손상추정법과 모드형상 이용 손상추정법을 제시하였다. 먼저, 고유진동수의 변화를 사용하여 손상의 위치를 예측하는 알고리즘과 고유진동수 1차 섭동 이론에 근거하여 균열크기를 예측하는 알고리즘을 요약하였다 다음으로, 모드형상의 변화로부터 모드민감도의 변화를 감지하고 이를 통해 손상의 위치와 크기를 추정하는 손상지수 알고리즘을 요약하였다. PSC 보의 유한요소모델을 사용하는 수치실험을 통해 고유 진동수 이용 손상추정법과 모드형상 이용 손상추정 법의 정확성을 검증하였다. 분석결과 두 방법 모두 실험 대상 구조에 도입된 균열의 위치를 정확하게 예측하였으며 균열의 크기를 비교적 근사하게 예측하였다.