• Title/Summary/Keyword: Damage map

Search Result 407, Processing Time 0.024 seconds

Flood Hazard Map in Kumagaya City

  • Tanaka, Seiichiro;Ogawa, Susumu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.763-765
    • /
    • 2003
  • We made a hazard map using GIS and remote sensing for he greatest inundation damage that happened for the 20th century. We calculated the land cover classification using Landsat from 1983 to 2000. We calculated it from a damage report and an aerial photo for a flood. We considered relation of both land cover classification and the damage. We expected the inundation damage in the future and made a hazard map.

  • PDF

The Finding Factors and Application Plans of the Volcanic Disaster Maps through Case Studies (사례분석을 통한 화산재해지도 구성요소 도출 및 활용 방안)

  • Chang, Eunmi;Park, Kyeong;Kim, Eun Kyung
    • Journal of the Korean association of regional geographers
    • /
    • v.20 no.1
    • /
    • pp.128-140
    • /
    • 2014
  • This study aims to investigate the characteristics and to classify the foreign volcanic disaster maps. Authors try to extract the components of volcanic disaster maps and apply them to the Mt. Baekdu volcano that receives worldwide attention recently has been on an early stage in Korea. Internationally, volcano ash disaster maps are derived and reviewed through three analytical framework components: Hazard Map, Risk Map, and Damage Map. These derived components of volcano ash disaster mapping systems are: 1) cumulative map of past disaster records, 2) probabilistic risk map, 3) scenario-based map and case-by-case utilization maps (evacuation response type, emergency information type, disaster preparedness education type) based on this components are presented.

  • PDF

Forest Damage Detection Using Daily Normal Vegetation Index Based on Time Series LANDSAT Images (시계열 위성영상 기반 평년 식생지수 추정을 통한 산림생태계 피해 탐지 기법)

  • Kim, Eun-sook;Lee, Bora;Lim, Jong-hwan
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1133-1148
    • /
    • 2019
  • Tree growth and vitality in forest shows seasonal changes. So, in order to detect forest damage accurately, we have to use satellite images before and after damages taken at the same season. However, temporal resolution of high or medium resolution images is very low,so it is not easy to acquire satellite images of the same seasons. Therefore, in this study, we estimated spectral information of the same DOY using time-series Landsat images and used the estimates as reference values to assess forest damages. The study site is Hwasun, Jeollanam-do, where forest damage occurred due to hail and drought in 2017. Time-series vegetation index (NDVI, EVI, NDMI) maps were produced using all Landsat 8 images taken in the past 3 years. Daily normal vegetation index maps were produced through cloud removal and data interpolation processes. We analyzed the difference of daily normal vegetation index value before damage event and vegetation index value after event at the same DOY, and applied the criteria of forest damage. Finally, forest damage map based on daily normal vegetation index was produced. Forest damage map based on Landsat images could detect better subtle changes of vegetation vitality than the existing map based on UAV images. In the extreme damage areas, forest damage map based on NDMI using the SWIR band showed similar results to the existing forest damage map. The daily normal vegetation index map can used to detect forest damage more rapidly and accurately.

A Study on the Characteristics of Flood Damage Caused by landslide and Its Minimization Using GIS-The Case Study in the Samwhadong, Donghae city, Kangwondo, Korea

  • Kang, Sang-Hyuk
    • Spatial Information Research
    • /
    • v.10 no.4
    • /
    • pp.493-499
    • /
    • 2002
  • This paper presents the disaster control due to flooding through the case study of Samwhadong, Donghae city, Kangwondo, broken out at 31, August 2002. In order to assess the characteristics of flood damage one must consider social and geological conditions, the factors of flood risk were derived based on GIS. For reduction of flood damage, flood hazard map was prepared for local residents. These information will support refuge activities, it would aid the reduction of flood damage.

  • PDF

A UIS-based System Development to Express the Damage History Information of Natural Disasters

  • Jeon, Tae-Gun;Hwang, Hyun-Suk;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1739-1747
    • /
    • 2010
  • The damage of natural disasters has occurred on huge scale more frequently than before. The damage caused by the disasters are summarized and are analyzed, and are managed as a very general type of documentation, not showing the position of previous damage records and related information such as weather, facilities of CCTV, hospitals, and gas station on the maps. Therefore, it needs to provide map-based searching systems considering damaged area as well as search key-words. This paper focuses on the development of a search system based on the map to manage previous disaster records and related information each disaster using spatial databases. This system consists of three modules, which are databases to store disaster data, the SQL procedure-based search module to extract needed information from the constructed databases, and the map module to express the search results on the map. This paper will contribute to provide framework of a system development for managing the disaster information according to each year and disaster based on the maps and to be utilized as the basic framework in developing damage prediction and prevention systems for disasters in future.

Inundation Map at Imwon Port with Past and Virtual Tsunamis (과거 및 가상 지진해일에 의한 임원항의 침수예상도)

  • Kim, Tae-Rim;Cho, He-Rin;Cho, Yong-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • The scale of disaster and damage witnessed in the 2004 Indian Ocean Tsunami and the 2011 Great East Japan Tsunami has motivated researchers in developing foolproof disaster mitigation techniques for safety of coastal communities. This study focuses on developing tsunami hazard map by numerical modeling at Imwon Port to minimize losses of human beings and property damage when a real tsunami event occurs. A hazard map is developed based on inundation maps obtained by numerical modeling of 3 past and 11 virtual tsunami cases. The linear shallow-water equations with manipulation of frequency dispersion and the non-linear shallow-water equations are employed to obtain inundation maps. The inundation map gives the maximum extent of expected flooded area and corresponding inundation depths which helps in identifying vulnerable areas for unexpected tsunami attacks. The information can be used for planning and developing safety zones and evacuation structures to minimize damage in case of real tsunami events.

Study on evacuation simulation for tsunami using the characteristics of Imwon Port (임원항의 지형특성을 고려한 지진해일 피난 수치모형 연구)

  • Kim, Sung-Min;Sim, Joo-Yeol;Cho, Young-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.221-223
    • /
    • 2008
  • It is the best way that to make an inundation map and distribute it to inhabitants for the purpose of decreasing damage of tsunami. To make an inundation map, tsunami which broughthuge damage to Korea should be properly investigated and maximum inundation zonewas selected by simulating tsunami phenomenan. An inundation map must involve the location of shelters and evacuation routes. New evacuation simulation program connected evacuation simulation procedure and tsunami inundation procedure to get inhabitants' evacuation states in real-time.

  • PDF

Accuracy Improvement for Building Inundation Trace Map using Accurate DEM Data and Flood Damage Information (정밀지형자료와 과거 침수피해정보를 활용한 침수흔적도 구축 정확도 개선)

  • Goo, Sin-Hoi;Kim, Seong-Sam;Park, Young-Jin;Choi, Jae-Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.91-99
    • /
    • 2011
  • With increasing astronomically damage costs caused by frequent and large-sized flood, a hazard map containing comprehensive analysis results such as inundation trace investigation, flood possibility analysis, and evacuation plan establishment for flooded regions is a fundamental measure of non-structural flood prevention. Though an inundation trace map containing flood investigation results occurred by typhoon, rainfall and tsunami is a basic hazard map having close relationship with a flood possibility map as well as a hazard information map, it is often impossible to be produced because of financial deficiency, time delay of investigation, and the lack of maintenance for flood traces. Therefore, this study proposes the accuracy enhancement procedure of inundation trace map with flood damage information and three-dimensional Digital Elevation Model (DEM) for the past frequent flooded regions according to a guideline for inundation trace map of National Emergency Management Agency (NEMA).

Prediction of Potential Habitat and Damage Amount of Rare·Endemic Plants (Sophora Koreensis Nakai) Using NBR and MaxEnt Model Analysis - For the Forest Fire Area of Bibongsan (Mt.) in Yanggu - (NBR과 MaxEnt 모델 분석을 활용한 희귀특산식물(개느삼) 분포 및 피해량 예측 - 양구 비봉산 산불피해지를 대상으로-)

  • Yun, Ho-Geun;Lee, Jong-Won;An, Jong-Bin;Yu, Seung-Bong;Bak, Gi-Ppeum;Shin, Hyun-Tak;Park, Wan-Geun;Kim, Sang-Jun
    • Korean Journal of Plant Resources
    • /
    • v.35 no.2
    • /
    • pp.169-182
    • /
    • 2022
  • This study was conducted to predict the distribution of rare·endemic plants (Sophora koreensis Nakai) in the border forests where wildfire damage occurred and to quantify the damage. For this purpose, we tried to derive more accurate results through forest area damage (NBR) according to the Burn severity of wildfires, damage by tree species type (Vegetation map), and MaxEnt model. For Burn severity analysis, satellite imagery (Landsat-8) was used to analyze Burn severity (ΔNBR2016-2015) and to derive the extent of damage. To prepare the Vegetation map, the land cover map prepared by the Ministry of Environment, the Vegetation map prepared by the Korea Forest Service, and the vegetation survey conducted by itself were conducted to prepare the clinical map before and after the forest fire. Lastly, for MaxEnt model analysis, the AUC value was derived by using the habitat coordinates of Sophora koreensis Nakai based on the related literature and self-report data. As a result of combining the Maxent model analysis data with the Burn severity data, it was confirmed that 45.9% of the 44,760 m2 of habitat (predicted) area of Sophora koreensis Nakai in the wildfire damaged area or 20,552 m2, was damaged.

Flood Damage Assessment According to the Scenarios Coupled with GIS Data (GIS 자료와 연계한 시나리오별 홍수피해액 분석)

  • Lee, Geun-Sang;Park, Jin-Hyeg
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.71-80
    • /
    • 2011
  • A simple and an improved methods for the assessment of flood damage were used in previous studies, and the Multi-Dimensional Flood Damage Assessment (MD-FDA) has been applied since 2004 in Korea. This study evaluated flood damage of dam downstream using considering MD-FDA method based on GIS data. Firstly, flood water level with FLDWAV (Flood Wave routing) model was input into cross section layer based on enforcement drainage algorithm, water depth grid data were created through spatial calculation with DEM data. The value of asset of building and agricultural land according to local government was evaluated using building layer from digital map and agricultural land map from landcover map. Also, itemized flood damage was calculated by unit price to building shape, evaluated value of housewares to urban type, unit cost to crop, tangible and inventory asset of company connected with building, agricultural land, flooding depth layer. Flood damage in rainfall frequency of 200 year showed 1.19, 1.30 and 1.96 times to flood damage in rainfall frequency of 100 year, 50 year and 10 year respectively by flood damage analysis.