• 제목/요약/키워드: Damage location

검색결과 933건 처리시간 0.025초

Multi-stage approach for structural damage identification using particle swarm optimization

  • Tang, H.;Zhang, W.;Xie, L.;Xue, S.
    • Smart Structures and Systems
    • /
    • 제11권1호
    • /
    • pp.69-86
    • /
    • 2013
  • An efficient methodology using static test data and changes in natural frequencies is proposed to identify the damages in structural systems. The methodology consists of two main stages. In the first stage, the Damage Signal Match (DSM) technique is employed to quickly identify the most potentially damaged elements so as to reduce the number of the solution space (solution parameters). In the second stage, a particle swarm optimization (PSO) approach is presented to accurately determine the actual damage extents using the first stage results. One numerical case study by using a planar truss and one experimental case study by using a full-scale steel truss structure are used to verify the proposed hybrid method. The identification results show that the proposed methodology can identify the location and severity of damage with a reasonable level of accuracy, even when practical considerations limit the number of measurements to only a few for a complex structure.

Damage identification in beam-like pipeline based on modal information

  • Yang, Zhi-Rong;Li, Hong-Sheng;Guo, Xing-Lin;Li, Hong-Yan
    • Structural Engineering and Mechanics
    • /
    • 제26권2호
    • /
    • pp.179-190
    • /
    • 2007
  • Damage detection based on measured vibration data has received intensive studies recently. Frequently, the damage to a structure may be reflected by a change of some system parameters, such as a degradation of the stiffness. In this paper, we apply a method to nondestructively locate and estimate the severity of damage in corrosion pipeline for which a few natural frequencies or mode shapes are available. The method is based on the strain modal sensitivity ratio (SMSR) and the orthogonality conditions sensitivities (OCS) applied to vibration features identified during the monitoring of the pipeline. The advantage of these methods is that it only requires measuring few modal parameters. The SMSR-based and OCS-based damage detection methods are illustrated using computer-simulated and laboratory testing data. The results show that the current method provides a precise indication of both the location and the extent of corrosion pipeline.

Performance evaluation of wavelet and curvelet transforms based-damage detection of defect types in plate structures

  • Hajizadeh, Ali R.;Salajegheh, Javad;Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • 제60권4호
    • /
    • pp.667-691
    • /
    • 2016
  • This study focuses on the damage detection of defect types in plate structures based on wavelet transform (WT) and curvelet transform (CT). In particular, for damage detection of structures these transforms have been developed since the last few years. In recent years, the CT approach has been also introduced in an attempt to overcome inherent limitations of traditional multi-scale representations such as wavelets. In this study, the performance of CT is compared with WT in order to demonstrate the capability of WT and CT in detection of defect types in plate structures. To achieve this purpose, the damage detection of defect types through defect shape in rectangular plate is investigated. By using the first mode shape of plate structure and the distribution of the coefficients of the transforms, the damage existence, the defect location and the approximate shape of defect are detected. Moreover, the accuracy and performance generality of the transforms are verified through using experimental modal data of a plate.

Damage assessment of composite structures using Particle Swarm Optimization

  • Jebieshia, T.R.;Maiti, D.K.;Maity, D.
    • International Journal of Aerospace System Engineering
    • /
    • 제2권2호
    • /
    • pp.24-28
    • /
    • 2015
  • Composite materials are highly sensitive to the presence of manufacturing and service-related defects that can reach a critical size during service condition and thereby may affect the safety of the structure. When the structure undergoes some kind of damage, its stiffness reduces, in turn the dynamic responses change. In order to avoid safety issues early detection of damage is necessary. The knowledge of the vibration behavior of a structure is necessary and can be used to determine the existence as well as the location and the extent of damage.

Generalization of the statistical moment-based damage detection method

  • Zhang, J.;Xu, Y.L.;Xia, Y.;Li, J.
    • Structural Engineering and Mechanics
    • /
    • 제38권6호
    • /
    • pp.715-732
    • /
    • 2011
  • A novel structural damage detection method with a new damage index has been recently proposed by the authors based on the statistical moments of dynamic responses of shear building structures subject to white noise ground motion. The statistical moment-based damage detection (SMBDD) method is theoretically extended in this paper with general application. The generalized SMBDD method is more versatile and can identify damage locations and damage severities of many types of building structures under various external excitations. In particular, the incomplete measurements can be considered by the proposed method without mode shape expansion or model reduction. Various damage scenarios of two general forms of building structures with incomplete measurements are investigated in consideration of different excitations. The effects of measurement noise are also investigated. The damage locations and damage severities are correctly identified even when a high noise level of 15% and incomplete measurements are considered. The effectiveness and versatility of the generalized SMBDD method are demonstrated.

A cumulative damage model for extremely low cycle fatigue cracking in steel structure

  • Huanga, Xuewei;Zhao, Jun
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.225-236
    • /
    • 2017
  • The purpose of this work is to predict ductile fracture of structural steel under extremely low cyclic loading experienced in earthquake. A cumulative damage model is proposed on the basis of an existing damage model originally aiming to predict fracture under monotonic loading. The cumulative damage model assumes that damage does not grow when stress triaxiality is below a threshold and fracture occurs when accumulated damage reach unit. The model was implemented in ABAQUS software. The cumulative damage model parameters for steel base metal, weld metal and heat affected zone were calibrated, respectively, through testing and finite element analyses of notched coupon specimens. The damage evolution law in the notched coupon specimens under different loads was compared. Finally, in order to examine the engineering applicability of the proposed model, the fracture performance of beam-column welded joints reported by previous researches was analyzed based on the cumulative damage model. The analysis results show that the cumulative damage model is able to successfully predict the cracking location, fracture process, the crack initiation life, and the total fatigue life of the joints.

음향방출(AE)을 이용한 풍력 블레이드의 피로손상 평가 (Evaluation of Fatigue Damage for Wind Turbine Blades Using Acoustic Emission)

  • 지현섭;주노회;소철호;이종규
    • 비파괴검사학회지
    • /
    • 제35권3호
    • /
    • pp.179-184
    • /
    • 2015
  • 본 연구에서는 풍력 블레이드의 피로손상으로 발생하는 음향방출신호의 특성을 살펴보기 위하여 길이 48 m의 풍력 블레이드 flap fatigue test를 100만 회까지 실시하였다. 60만 회까지는 hit수와 total energy가 꾸준히 증가하는 것으로 보아 블레이드의 손상이 지속되는 것으로 보이며, 주 손상기구는 rise time의 분석결과 기지균열의 생성과 성장으로 판단되었다. 또한 채널별 신호 분석을 통해 가장 손상을 많이 받은 부위가 체결부 20 m 지점의 skin과 spar의 접합 부위로 추정하였고 실제 손상 부위는 육안검사를 통해서도 확인되었다. Event source location 결과는 각 채널의 total energy 변화와 관련이 있었으며, 이러한 결과가 반영됨으로써 풍력 블레이드의 최적 설계에 유용할 것으로 판단된다.

Damage detection in steel structures using expanded rotational component of mode shapes via linking MATLAB and OpenSees

  • Toorang, Zahra;Bahar, Omid;Elahi, Fariborz Nateghi
    • Earthquakes and Structures
    • /
    • 제22권1호
    • /
    • pp.1-13
    • /
    • 2022
  • When a building suffers damages under moderate to severe loading condition, its physical properties such as damping and stiffness parameters will change. There are different practical methods besides various numerical procedures that have successfully detected a range of these changes. Almost all the previous proposed methods used to work with translational components of mode shapes, probably because extracting these components is more common in vibrational tests. This study set out to investigate the influence of using both rotational and translational components of mode shapes, in detecting damages in 3-D steel structures elements. Three different sets of measured components of mode shapes are examined: translational, rotational, and also rotational/translational components in all joints. In order to validate our assumptions two different steel frames with three damage scenarios are considered. An iterative model updating program is developed in the MATLAB software that uses the OpenSees as its finite element analysis engine. Extensive analysis shows that employing rotational components results in more precise prediction of damage location and its intensity. Since measuring rotational components of mode shapes still is not very convenient, modal dynamic expansion technique is applied to generate rotational components from measured translational ones. The findings indicated that the developed model updating program is really efficient in damage detection even with generated data and considering noise effects. Moreover, methods which use rotational components of mode shapes can predict damage's location and its intensity more precisely than the ones which only work with translational data.

진동모드특성치를 이용한 철근콘크리트 구조물의 손상예측 (Damage Prediction in Reinforced Concrete Structures using Modal Response Parameters)

  • 김정태
    • 콘크리트학회지
    • /
    • 제6권6호
    • /
    • pp.180-189
    • /
    • 1994
  • 철근콘크리트 구조물의 손상을 진동반응특성치의 변화를 측정한 자료로부터 예측할 수 있는 실용적인 방법론이 제시되었다. 먼저, 구조물에 발생한 손상의 위치를 구조물 모드형상의 변화로부터 결정할 수 있는 알고리즘이 요약되었다. 다음으로, 실물크기 1/3 촉소 건조된 철근콘크리트 구조물을 사용한 실험에서 알고리즘을 이용하여 손상의 위치를 예측하였다. 이 실험과정에는 손상발생 전$\cdot$후의 소수의 진동반응특성치가 사용되었다. 구조물의 손상을 예측한 결과로부터 알고리즘이 손상을 정확하게 발견하는 것으로 판명되었다.

Wavelet analysis and enhanced damage indicators

  • Lakshmanan, N.;Raghuprasad, B.K.;Muthumani, K.;Gopalakrishnan, N.;Basu, D.
    • Smart Structures and Systems
    • /
    • 제3권1호
    • /
    • pp.23-49
    • /
    • 2007
  • Wavelet transforms are the emerging signal-processing tools for damage identification and time-frequency localization. A small perturbation in a static or dynamic displacement profile could be captured using multi-resolution technique of wavelet analysis. The paper presents the wavelet analysis of damaged linear structural elements using DB4 or BIOR6.8 family of wavelets. Starting with a localized reduction of EI at the mid-span of a simply supported beam, damage modeling is done for a typical steel and reinforced concrete beam element. Rotation and curvature mode shapes are found to be the improved indicators of damage and when these are coupled with wavelet analysis, a clear picture of damage singularity emerges. In the steel beam, the damage is modeled as a rotational spring and for an RC section, moment curvature relationship is used to compute the effective EI. Wavelet analysis is performed for these damage models for displacement, rotation and curvature mode shapes as well as static deformation profiles. It is shown that all the damage indicators like displacement, slope and curvature are magnified under higher modes. A localization scheme with arbitrary location of curvature nodes within a pseudo span is developed for steady state dynamic loads, such that curvature response and damages are maximized and the scheme is numerically tested and proved.