• 제목/요약/키워드: Damage calculation model

Search Result 141, Processing Time 0.026 seconds

Assessment of seismic damage inspection and empirical vulnerability probability matrices for masonry structure

  • Li, Si-Qi;Chen, Yong-Sheng;Liu, Hong-Bo;Du, Ke;Chi, Bo
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.387-399
    • /
    • 2022
  • To study the seismic damage of masonry structures and understand the characteristics of the multi-intensity region, according to the Dujiang weir urbanization of China Wenchuan earthquake, the deterioration of 3991 masonry structures was summarized and statistically analysed. First, the seismic damage of multistory masonry structures in this area was investigated. The primary seismic damage of components was as follows: Damage of walls, openings, joints of longitudinal and transverse walls, windows (lower) walls, and tie columns. Many masonry structures with seismic designs were basically intact. Second, according to the main factors of construction, seismic intensity code levels survey, and influence on the seismic capacity, a vulnerability matrix calculation model was proposed to establish a vulnerability prediction matrix, and a comparative analysis was made based on the empirical seismic damage investigation matrix. The vulnerability prediction matrix was established using the proposed vulnerability matrix calculation model. The fitting relationship between the vulnerability prediction matrix and the actual seismic damage investigation matrix was compared and analysed. The relationship curves of the mean damage index for macrointensity and ground motion parameters were drawn through calculation and analysis, respectively. The numerical analysis was performed based on actual ground motion observation records, and fitting models of PGA, PGV, and MSDI were proposed.

A Study on Rescue Technique and Safe Tow of Damaged Ship(1) - Prediction of Final Drafts and Residual Stability of Ship in Damage - (손상된 선박의 구난 기술 및 안전 예항에 관한 연구(1) - 손상시의 선체 자세 및 잔존 복원성 평가법 -)

  • 손경호;이상갑;최경식;안영규;김윤수
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.3
    • /
    • pp.83-90
    • /
    • 1997
  • Damage stability is generally very important as a part of rescue technique of damaged ship and also in connection with the requirements of MARPOL73/78[2]. Damage stability calculation program has been developed and suggest, which can be used on an onboard computer for any operating drafts. The program is based on lost buoyancy method for calculation of final drafts, and also based on added mass method for calculation of residual righting arm. The numerical method suggested by Hamamoto-Kim[6] is adopted for calculation of intact righting arm(GZ). The model experiments on damage stability are also carried out in a small tank with tanker model 2.385 meters long. The experimental results are compared with the calculations by the suggested method.

  • PDF

Application of steel equivalent constitutive model for predicting seismic behavior of steel frame

  • Wang, Meng;Shi, Yongjiu;Wang, Yuanqing
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1055-1075
    • /
    • 2015
  • In order to investigate the accuracy and applicability of steel equivalent constitutive model, the calculated results were compared with typical tests of steel frames under static and dynamic loading patterns firstly. Secondly, four widely used models for time history analysis of steel frames were compared to discuss the applicability and efficiency of different methods, including shell element model, multi-scale model, equivalent constitutive model (ECM) and traditional beam element model (especially bilinear model). Four-story steel frame models of above-mentioned finite element methods were established. The structural deformation, failure modes and the computational efficiency of different models were compared. Finally, the equivalent constitutive model was applied in seismic incremental dynamic analysis of a ten-floor steel frame and compared with the cyclic hardening model without considering damage and degradation. Meanwhile, the effects of damage and degradation on the seismic performance of steel frame were discussed in depth. The analysis results showed that: damages would lead to larger deformations. Therefore, when the calculated results of steel structures subjected to rare earthquake without considering damage were close to the collapse limit, the actual story drift of structure might already exceed the limit, leading to a certain security risk. ECM could simulate the damage and degradation behaviors of steel structures more accurately, and improve the calculation accuracy of traditional beam element model with acceptable computational efficiency.

A surrogate model-based framework for seismic resilience estimation of bridge transportation networks

  • Sungsik Yoon ;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • A bridge transportation network supplies products from various source nodes to destination nodes through bridge structures in a target region. However, recent frequent earthquakes have caused damage to bridge structures, resulting in extreme direct damage to the target area as well as indirect damage to other lifeline structures. Therefore, in this study, a surrogate model-based comprehensive framework to estimate the seismic resilience of bridge transportation networks is proposed. For this purpose, total system travel time (TSTT) is introduced for accurate performance indicator of the bridge transportation network, and an artificial neural network (ANN)-based surrogate model is constructed to reduce traffic analysis time for high-dimensional TSTT computation. The proposed framework includes procedures for constructing an ANN-based surrogate model to accelerate network performance computation, as well as conventional procedures such as direct Monte Carlo simulation (MCS) calculation and bridge restoration calculation. To demonstrate the proposed framework, Pohang bridge transportation network is reconstructed based on geographic information system (GIS) data, and an ANN model is constructed with the damage states of the transportation network and TSTT using the representative earthquake epicenter in the target area. For obtaining the seismic resilience curve of the Pohang region, five epicenters are considered, with earthquake magnitudes 6.0 to 8.0, and the direct and indirect damages of the bridge transportation network are evaluated. Thus, it is concluded that the proposed surrogate model-based framework can efficiently evaluate the seismic resilience of a high-dimensional bridge transportation network, and also it can be used for decision-making to minimize damage.

A Study on Method for Damage Calculation Caused by Bid Rigging in Alternative Tenders for Construction Projects -Utilizing the Difference of the Design Score & Bidding Rate as Factor - (건설공사 대안입찰 담합으로 인한 손해액 산정모델 연구 - 설계점수 및 투찰률 차이 인자 활용 -)

  • Min, Byeong-Uk;Park, Hyung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.741-749
    • /
    • 2018
  • The purpose of this study is to propose a rational and scientific damage calculation model in relation to damages caused by bid rigging in construction projects. Previous studies and precedents in relation to calculating damages from bid rigging suggest that the main issue was the lack of consideration in standards for deciding successful bids, selection of inadequate standard comparative markets, insufficiency in analyzing the appropriateness of competitive bid price influence factors, and absence of calculation model verification. In order to improve on these issues, a damage calculation method on alternative tenders for construction projects was proposed. For this calculation model, first, a standard market adequate to the successful bid selection standards was determined, second, an appropriate factor was selected by analyzing the correlation between competitive bid price influence factors, and third, a regression analysis was conducted on the selected factor. Lastly, this was demonstrated through verification of appropriateness, significance & normality of the proposed model and application of actual bid rigging cases. Through the proposed calculation model, this study seeks to serve as a base to prevent opportunity damages for parties involved in related court cases by early resolution of disputes and relief from issues of unfair damage burdens on a particular party.

Study on Optimization of Fatigue Damage Calculation Process Using Spectrum (스펙트럼을 이용한 피로손상도 계산과정 최적화 연구)

  • Kim, Sang Woo;Lee, Seung Jae;Choi, Sol Mi
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.151-157
    • /
    • 2018
  • Offshore structures are exposed to low- and high-frequency responses due to environmental loads, and fatigue damage models are used to calculate the fatigue damage from these. In this study, we tried to optimize the main parameters used in fatigue damage calculation to derive a new fatigue damage model. A total of 162 bi-modal spectra using the elliptic equation were defined to describe the response of offshore structures. To calculate the fatigue damage from the spectra, time series were generated from the spectra using the inverse Fourier transform, and the rain-flow counting method was applied. The considered optimization variables were the size of the frequency increments, ratio of the time increment, and number of repetitions of the time series. In order to obtain optimized values, the fatigue damage was calculated using the parameter values proposed in previous work, and the fatigue damage was calculated by increasing or decreasing the proposed values. The results were compared, and the error rate was checked. Based on the test results, new values were found for the size of the frequency increment and number of time series iterations. As a validation, the fatigue damage of an actual tension spectrum found using the new proposed values and fatigue damage found using the previously proposed method were compared. In conclusion, we propose a new optimized calculation process that is faster and more accurate than the existed method.

A novel method for generation and prediction of crack propagation in gravity dams

  • Zhang, Kefan;Lu, Fangyun;Peng, Yong;Li, Xiangyu
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.665-675
    • /
    • 2022
  • The safety problems of giant hydraulic structures such as dams caused by terrorist attacks, earthquakes, and wars often have an important impact on a country's economy and people's livelihood. For the national defense department, timely and effective assessment of damage to or impending damage to dams and other structures is an important issue related to the safety of people's lives and property. In the field of damage assessment and vulnerability analysis, it is usually necessary to give the damage assessment results within a few minutes to determine the physical damage (crack length, crater size, etc.) and functional damage (decreased power generation capacity, dam stability descent, etc.), so that other defense and security departments can take corresponding measures to control potential other hazards. Although traditional numerical calculation methods can accurately calculate the crack length and crater size under certain combat conditions, it usually takes a long time and is not suitable for rapid damage assessment. In order to solve similar problems, this article combines simulation calculation methods with machine learning technology interdisciplinary. First, the common concrete gravity dam shape was selected as the simulation calculation object, and XFEM (Extended Finite Element Method) was used to simulate and calculate 19 cracks with different initial positions. Then, an LSTM (Long-Short Term Memory) machine learning model was established. 15 crack paths were selected as the training set and others were set for test. At last, the LSTM model was trained by the training set, and the prediction results on the crack path were compared with the test set. The results show that this method can be used to predict the crack propagation path rapidly and accurately. In general, this article explores the application of machine learning related technologies in the field of mechanics. It has broad application prospects in the fields of damage assessment and vulnerability analysis.

Degradation and damage behaviors of steel frame welded connections

  • Wang, Meng;Shi, Yongjiu;Wang, Yuanqing;Xiong, Jun;Chen, Hong
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.357-377
    • /
    • 2013
  • In order to study the degradation and damage behaviors of steel frame welded connections, two series of tests in references with different connection constructions were carried out subjected to various cyclic loading patterns. Hysteretic curves, degradation and damage behaviours and fatigue properties of specimens were firstly studied. Typical failure modes and probable damage reasons were discussed. Then, various damage index models with variables of dissipative energy, cumulative displacement and combined energy and displacement were summarized and applied for all experimental specimens. The damage developing curves of ten damage index models for each connection were obtained. Finally, the predicted and evaluated capacities of damage index models were compared in order to describe the degraded performance and failure modes. The characteristics of each damage index model were discussed in depth, and then their distributive laws were summarized. The tests and analysis results showed that the loading histories significantly affected the distributive shapes of damage index models. Different models had their own ranges of application. The selected parameters of damage index models had great effect on the developing trends of damage curves. The model with only displacement variable was recommended because of a more simple form and no integral calculation, which was easier to be formulated and embedded in application programs.

Decision-Making Model Research for the Calculation of the National Disaster Management System's Standard Disaster Prevention Workforce Quota : Based on Local Authorities

  • Lee, Sung-Su;Lee, Young-Jai
    • Journal of Information Technology Applications and Management
    • /
    • v.17 no.3
    • /
    • pp.163-189
    • /
    • 2010
  • The purpose of this research is to develop a decision-making model for the calculation of the National Disaster Management System's standard prevention workforce quota. The final purpose of such model is to support in arranging a rationally sized prevention workforce for local authorities by providing information about its calculation in order to support an effective and efficient disaster management administration. In other words, it is to establish and develop a model that calculates the standard disaster prevention workforce quota for basic local governments in order to arrange realistically required prevention workforce. In calculating Korea's prevention workforce, it was found that the prevention investment expenses, number of prevention facilities, frequency of flood damage, number of disaster victims, prevention density, and national disaster recovery costs have positive influence on the dependent variable when the standard prevention workforce was set as the dependent variable. The model based on the regression analysis-which consists of dependent and independent variables-was classified into inland mountainous region, East coast region, Southwest coastal plain region to reflect regional characteristics for the calculation of the prevention workforce. We anticipate that the decision-making model for the standard prevention workforce quota will aid in arranging an objective and essential prevention workforce for Korea's basic local authorities.

  • PDF

A Study of Strength of Damaged Ship Structures Using Damage Simulator (Damage simulator를 이용한 선박의 손상강도에 관한 연구)

  • Han, Dae-Suk;Cho, Dae-Seung;Kim, Jin-Hyung;Lee, Tak-Kee;Rim, Chae-Whan;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.439-444
    • /
    • 2007
  • A damage analysis simulator, which is applicable for evaluating the residual strength of damaged ship, was developed in this paper. For this process, CDM (Continuum Damage Mechanics) approach has been implemented to the simulator by virtue of the numerical technique for evaluation of crack initiation and/or enlargement. A damage calculation program has been linked with a commercial finite element analysis code (NASTRAN) and a ultimate strength evaluation program (LSAP) in order to assess residual strength of damaged ship. As a results of series calculation for the frigate model, giving the quantitative structural damage to the ultimate strength evaluation, a residual strength with damage is predicted to be at least 70 percentage lower than the case of intact condition. It was found that the proposed technique can be used as a design support tool in the field of simulation based ship design.