• Title/Summary/Keyword: Damage Value

Search Result 1,597, Processing Time 0.03 seconds

Baseline-free damage detection method for beam structures based on an actual influence line

  • Wang, Ning-Bo;Ren, Wei-Xin;Huang, Tian-Li
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.475-490
    • /
    • 2019
  • The detection of structural damage without a priori information on the healthy state is challenging. In order to address the issue, the study presents a baseline-free approach to detect damage in beam structures based on an actual influence line. In particular, a multi-segment function-fitting calculation is developed to extract the actual deflection influence line (DIL) of a damaged beam from bridge responses due to a passing vehicle. An intact basis function based on the measurement position is introduced. The damage index is defined as the difference between the actual DIL and a constructed function related to the intact basis, and the damage location is indicated based on the local peak value of the damage index curve. The damage basis function is formulated by using the detected damage location. Based on the intact and damage basis functions, damage severity is quantified by fitting the actual DIL using the least-square calculation. Both numerical and experimental examples are provided to investigate the feasibility of the proposed method. The results indicate that the present baseline-free approach is effective in detecting the damage of beam structures.

Imaging Magnetic Flux Leakage based Steel Plate Damage for Steel Structure Diagnosis (강구조물 진단을 위한 누설자속 기반 강판 손상의 이미지화)

  • Kim, Hansun;Kim, Ju-Won;Yu, Byoungjoon;Kim, Wonkyu;Park, Seunghee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.129-136
    • /
    • 2019
  • In this study, the magnetic flux leakage technique was applied to diagnose steel plate damage, imaging technique was applied through those signals. Steel plate specimens with different thicknesses were prepared for the imaging the magnetic flux leakage signal, and 6 different depths of damage were artificially processed at the same locations on each specimen. The sensor head consist hall sensor and magnetization yoke was fabricated to magnetize the steel plate specimen and measure the magnetic flux leakage signal. In order to remove the noise and increase the resolution of the image in the signal collected from the hall sensor, various of signal processing was performed. P-P value was analyzed for each channel to analyze the magnetic flux leakage signals measured from each damaged part. Based on the above processed signals and analysis, it was converted into heatmap image. Through this, it was possible to identify the damage on the steel plate at glance by imaging magnetic flux leakage signal.

Estimation of the Allowable Bio-shock Fragility Index of Fruits for Optimum Packaging Design (적정 포장설계를 위한 과실의 바이오 허용 충격지수 추정)

  • Kim, Ghi-Seok;Jung, Hyun-Mo;Kim, Ki-Bok;Kim, Man-Soo
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.416-421
    • /
    • 2007
  • Physical damage to fruits and vegetables caused by shock degrades the value of product in the fresh market. In order to design a product/packaging system to protect the product, the G-factor to the product that causes shock damage needs to be determined. The shock fragility of organisms such as fruits with a concept correspondent to the G-factor of industrial products was calculated and we defined the allowable bio-shock fragility index as the value divided peak acceleration that was generated in safe drop height by standard acceleration of gravity. We did modeling for safe drop hight that would prevent fruits from damage by drop tests and tried to estimate the allowable bio-shock fragility index of pears and apples for optimum packaging design. The bio-shock fragility index of pears was in the range of $0.74{\sim}2.29\;G$, while apples had a slightly higher value than that of pears, of $0.51{\sim}2.98\;G$. This result shows accordance with the general fact that apples have a firmer structure and get less damage from the same impact. Based on this result, it is possible to create an optimum packaging design by providing a damage standard by impact.

Expected Annual Damage Estimation with Uncertainty (불확실성을 고려한 연피해 기대치 산정)

  • Kim, Hung Soo;Kim, Yoo Jin;Lee, Ji-Won
    • Journal of Wetlands Research
    • /
    • v.5 no.1
    • /
    • pp.41-52
    • /
    • 2003
  • The flood damage reduction studies have been performed by the channel improvement plan and the levee has mainly constructed with the freeboard concept. However, the freeboard concept might be an inappropriate choice as a safety factor of the levee because many uncertainties are involved in the procedure of the channel improvement plan studies. So, we considered the uncertainties In the discharge-probability, stage-discharge, and stage-damage functions and estimate the expected annual damage. The Monte Carlo technique for uncertainty analysis is used. As our results, the expected annual damage with uncertainty shows the larger value than without uncertainty. Since the expected annual damage with uncertainty already considers the safety factor it is the proper result. However, the expected annual damage without uncertainty does not consider the safety factor yet. Thus, if the expected annual damage without uncertainty considers the freeboard concept, it could be compared with the expected annual damage with uncertainty for the evaluation of the overestimation or underestimation of the levee construction.

  • PDF

A Study of Fatigue Damage Model using Neural Networks in 2024-T3 Aluminium Alloy (신경회로망을 이용한 Al 2024-T3 합금의 피로손상모델에 관한 연구)

  • 홍순혁;조석수;주원식
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.14-21
    • /
    • 2001
  • To estimate crack growth rate and cycle ratio uniquely, many investigators have developed various kinds of mechanical parameters and theories. But, thes have produced local solution space through single parameter. Neural Networks can perform patten classification using several input and output parameters. Fatigue damage model by neural networks was used to recognize the relation between da/dN/N/N(sub)f, and half-value breadth ratio B/Bo, fractal dimension D(sub)f, and fracture mechanical parameters in 2024-T3 aluminium alloy. Learned neural networks has ability to predict both crack growth rate da/dN and cycly ratio /N/N(sub)f within engineering estimated mean error(5%).

  • PDF

Damage Value Calculation of Fuel Tank Considering Modal Characteristics (모달특성을 고려한 Fuel Tank의 손상도 계산)

  • Han, Woo-Sub;Park, Kwang-Seo;Kim, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.534-538
    • /
    • 2008
  • The vehicle system is exposed to random source in service. Therefore, it is important to consider dynamic effect of the system. But, fatigue analysis is traditionally performed by using time signal of loading. To obtain dynamic effect of resonance, we carried out resonance durability analysis with frequency response and the dynamic load on frequency domain. The study shows that the damage considering resonant frequency of fuel tank system can be effectively estimated.

  • PDF

Wavelet analysis based damage localization in steel frames with bolted connections

  • Pnevmatikos, Nikos G.;Blachowski, Bartlomiej;Hatzigeorgiou, George D.;Swiercz, Andrzej
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1189-1202
    • /
    • 2016
  • This paper describes an application of wavelet analysis for damage detection of a steel frame structure with bolted connections. The wavelet coefficients of the acceleration response for the healthy and loosened connection structure were calculated at each measurement point. The difference of the wavelet coefficients of the response of the healthy and loosened connection structure is selected as an indicator of the damage. At each node of structure the norm of the difference of the wavelet coefficients matrix is then calculated. The point for which the norm has the higher value is a candidate for location of the damage. The above procedure was experimentally verified on a laboratory-scale 2-meter-long steel frame. The structure consists of 11 steel beams forming a four-bay frame, which is subjected to impact loads using a modal hammer. The accelerations are measured at 20 different locations on the frame, including joints and beam elements. Two states of the structure are considered: healthy and damaged one. The damage is introduced by means of loosening two out of three bolts at one of the frame connections. Calculating the norm of the difference of the wavelet coefficients matrix at each node the higher value was found to be at the same location where the bolts were loosened. The presented experiment showed the effectiveness of the wavelet approach to damage detection of frame structures assembled using bolted connections.

Protective Effect of Natural Medicinal Plants against Oxidative Damage Induced by Reactive Oxygen Species (천연약용식물의 활성산조종에 의한 산화적 손상의 보호 효과)

  • 이시은;주은미;김정희
    • Environmental Analysis Health and Toxicology
    • /
    • v.15 no.4
    • /
    • pp.147-155
    • /
    • 2000
  • In order to evaluate anti -oxidant activities and protective effect against oxidatve damage, DPPH radical scavenging activity and lipid peroxidation inhibitory activity were measured among methanol extracts prepared from natural medicinal plants. Fourteen natural medicinal plants which were reported to have anti -oxidative or anti-inflammatory effects were selected based on our previous report. In addition to the total methanol extracts, n-hexane, dichloromethane, ethylacetate, n-butanol and water fractions were prepared from each total extract. DPPH radical scavenging assay was performed against 14 total extracts and all samples showed dose-dependent activities in various extent. Among those, 6 samples, methanol extracts of Euryale ferox, paeonia suffruticosa, Areca catechu var. dulcissima, Cinnamomun cassia, Alpinia katsumadai and Betula platyphlla var. japonica showed IC$\sub$50/ value lower than 6.0 $\mu\textrm{g}$/ml. The highest DPPH radical scavenging activity was found in ethylacetate fraction of paeonia suffruticosa with IC$\sub$50/ value of 1.1 $\mu\textrm{g}$/ml. Analysis of lipid peroxidation inhibitory activity on hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast (V79-4) cells revealed that the highest inhibitory effect was observed in methanol extract of Betula platyhpylla var. japonica. Lipid peroxidation inhibitory activity was observed as a dose-dependent manner in all samples used in this study. Among fraction samples, ethylacetate fraction of Alpinia katsumadai had the strongest inhibitory activity with IC$\sub$50/ value of 0.9 $\mu\textrm{g}$/ml.

  • PDF

Demand response modification factor for the investigation of inelastic response of base isolated structures

  • Cheraghi, Rashid Eddin;Izadifarda, Ramezan Ali
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.23-48
    • /
    • 2013
  • In this study, the effect of flexibility of superstructures and nonlinear characteristics of LRB (Lead Rubber Bearing) isolator on inelastic response of base isolated structures is investigated. To demonstrate the intensity of damage in superstructures, demand response modification factor without the consideration of damping reduction factor, demand RI, is used and the N2 method is applied to compute this factor. To evaluate the influence of superstructure flexibility on inelastic response of base isolated structures, different steel intermediate moment resisting frames with different heights have been investigated. In lead rubber bearing, the rubber provides flexibility and the lead is the source of damping; variations of aforementioned characteristics are also investigated on inelastic response of superstructures. It is observed that an increase in height of superstructure leads to higher value of demand RI till 4-story frame but afterward this factor remains constant; in other words, an increase in height until 4-story frame causes more damage in the superstructure but after that superstructure's damage is equal to the 4-story frame's. The results demonstrate that the low value of second stiffness (rubber stiffness in LRBs) tends to show a significant decrease in demand RI. Increase in value of characteristic strength (yield strength of the lead in LRBs) leads to decrease in the demand RI.