• Title/Summary/Keyword: Damage Value

Search Result 1,597, Processing Time 0.022 seconds

Polysaccharide Extracted from Rheum Tanguticum Prevents Irradiation-induced Immune Damage in Mice

  • Liu, Lin-Na;Guo, Zhi-Wei;Zhang, Yan;Qin, Hua;Han, Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1401-1405
    • /
    • 2012
  • Aim: To investigate the protective effect of purified fraction 1 polysaccharide extracted from Rheum tanguticum RTP1 on irradiation-induced immune damage in mice. Methods: Kunming mice were randomly divided into five groups: normal group (NC), irradiation control group (IC), RTP1 low dose (200 mg/kg), middle dose (400 mg/kg) and high dose (800 mg/kg) groups. RTP1 was adminstered by the gastric route for 14 d, mice in the NC and IC groups being given by 0.9% sodium chloride solution in the same way. The mice in all groups except NC group were irradiated with 2.0 Gy $^{60}Co{\gamma}$-ray on the fourteenth day. Immune indives of non-specific immune function, cellular immunity and humoral immunity were assessed at the 24th hour after radiation. Results: Compared with the IC group, the spleen index, thymus index, rate of carbon clearance, phagocytic function of macrophages, lymphocyte proliferation, hemolysin value of blood serum and NK activity were increased markedly (P < 0.05 or P < 0.05). Conclusion: RTP1 has an obvious protective effects on damage in ${\gamma}$-ray radiated mice.

The study for grading the area damaged by forest fire using LiDAR and digital aerial photograph (LiDAR 및 디지털항공사진을 이용한 산불 피해지의 등급화에 관한 연구)

  • Kwak, Doo-Ahn
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.187-194
    • /
    • 2008
  • LiDAR는 일반 항공사진 및 위성영상과는 달리 사물의 높이를 측정할 수 있어 산림의 3차원 모델링을 수행할 수 있다. 본 연구에서는 이러한 LiDAR의 특성을 이용하여 산불이 발생한 강원도 양양지역 산림의 물리적 피해를 분석하였으며, 디지털 항공사진으로부터 Normalized Difference Vegetation Index (NDVI)를 추출하여 산림의 생물학적 피해를 분석하였다. 산림의 물리적 피해는 임관의 피해정도에 따라 지표면에서 반사되는 Point Data의 개수의 비율로서 추정을 하였다. 피해정도의 고저(高低)를 구분하는 기준은 통계적 방법 (Jenk's Natural Break) 으로부터 추정된 0.3594을 사용하였으며, 지표면 반사비율이 0.3594 이상인 경우 물리적 피해정도를 고(高, Serious Physical Damage; SPD), 지표면 반사비율이 0.3594 이하인 경우 물리적 피해정도를 저(低, Light Physical Damage; LPD)로 나타내었다. 또한 생물학적 피해는 일반적인 NDVI 값의 범위(-1

  • PDF

Development of the Expert System for Management on Slab Bridge Decks (슬래브교 상판의 전문가 시스템 개발)

  • Ahn, Young-Ki;Lee, Cheung-Bin;Yim, Jung-Soon;Lee, Jin-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.267-277
    • /
    • 2003
  • The purpose of this study makes a retrofit and rehabilitation practice trough the analysis and the improvement for the underlying problem of current retrofit and rehabilitation methods. Therefore, the deterioration process, the damage cause, the condition classification, the fatigue mechanism and the applied quantity of strengthening methods for slab bridge decks were analysed. Artificial neural networks are efficient computing techniqures that are widely used to solve complex problems in many fields. In this study, a back-propagation neural network model for estimating a management on existing slab bridge decks from damage cause, damage type, and integrity assessment at the initial stsge is need. The training and testing of the network were based on a database of 36. Four different network models werw used to study the ability of the neural network to predict the desirable output of increasing degree of accuracy. The neural networks is trained by modifying the weights of the neurons in response to the errors between the actual output values and the target output value. Training was done iteratively until the average sum squared errors over all the training patterms were minimized. This generally occurred after about 5,000 cycles of training.

The Air Carrier연s Liability for Damage Caused by Delay in the Transport of International Air Cargo (국제항공화물의 운송 지연에 대한 항공운송인의 책임)

  • 이강빈
    • Journal of Arbitration Studies
    • /
    • v.13 no.2
    • /
    • pp.377-401
    • /
    • 2004
  • Delay in the air transport occurs when passengers, baggage or cargo do not arrive at their destination at the time indicated in the contract of carriage. The causes of delay in the carriage of cargo are no reservation, lack of space, failure to load the cargo on board, loading the cargo on the wrong plane, failure to off-load the cargo at the right place, or to deliver the covering documents at the right place. The Montreal Convention of 1999 Article 19 provides that "The carrier is liable for damage occasioned by delay in the carriage by air of cargo. Nevertheless, the carrier shall not be liable for damage occasioned by delay if it proves that it and its servants and agents took all measures that could reasonably be required to avoid the damage or that it was impossible for it or them to take such measures." The Montreal Convention Article 22 provides liability limits of the carrier in case of delay for cargo. In the carriage of cargo, the liability of the carrier is limited to 17 SDR per kilogram unless a special declaration as to the value of the cargo has been made. The Montreal Convention Article 19 has shortcomings: it is silent on the duration of the liability for carriage. It does not give any indication concerning the circumstances to be taken into account in cases of delay, and about the length of delay. In conclusion, it is desirable to define the period of carriage with accuracy, and to insert the word 'unreasonable' in Article 19.

  • PDF

Intelligent bolt-jointed system integrating piezoelectric sensors with shape memory alloys

  • Park, Jong Keun;Park, Seunghee
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.135-147
    • /
    • 2016
  • This paper describes a smart structural system, which uses smart materials for real-time monitoring and active control of bolted-joints in steel structures. The goal of this research is to reduce the possibility of failure and the cost of maintenance of steel structures such as bridges, electricity pylons, steel lattice towers and so on. The concept of the smart structural system combines impedance based health monitoring techniques with a shape memory alloy (SMA) washer to restore the tension of the loosened bolt. The impedance-based structural health monitoring (SHM) techniques were used to detect loosened bolts in bolted-joints. By comparing electrical impedance signatures measured from a potentially damage structure with baseline data obtained from the pristine structure, the bolt loosening damage could be detected. An outlier analysis, using generalized extreme value (GEV) distribution, providing optimal decision boundaries, has been carried out for more systematic damage detection. Once the loosening damage was detected in the bolted joint, the external heater, which was bonded to the SMA washer, actuated the washer. Then, the heated SMA washer expanded axially and adjusted the bolt tension to restore the lost torque. Additionally, temperature variation due to the heater was compensated by applying the effective frequency shift (EFS) algorithm to improve the performance of the diagnostic results. An experimental study was conducted by integrating the piezoelectric material based structural health monitoring and the SMA-based active control function on a bolted joint, after which the performance of the smart 'self-monitoring and self-healing bolted joint system' was demonstrated.

3D finite element simulation of human proximal femoral fracture under quasi-static load

  • Hambli, Ridha
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • In this paper, a simple and accurate finite element model coupled to quasi-brittle damage law able to describe the multiple cracks initiation and their progressive propagation is developed in order to predict the complete force-displacement curve and the fracture pattern of human proximal femur under quasi-static load. The motivation of this work was to propose a simple and practical FE model with a good compromise between complexity and accuracy of the simulation considering a limited number of model parameters that can predict proximal femur fracture more accurately and physically than the fracture criteria based models. Different damage laws for cortical and trabecular bone are proposed based on experimental results to describe the inelastic damage accumulation under the excessive load. When the damage parameter reaches its critical value inside an element of the mesh, its stiffness matrix is set to zero leading to the redistribution of the stress state in the vicinity of the fractured zone (crack initiation). Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. To illustrate the potential of the proposed approach, the left femur of a male (age 61) previously investigated by Keyak and Falkinstein, 2003 (Model B: male, age 61) was simulated till complete fracture under one-legged stance quasi-static load. The proposed finite element model leads to more realistic and precise results concerning the shape of the force-displacement curve (yielding and fracturing) and the profile of the fractured edge.

Seismic failure analysis and safety assessment of an extremely long-span transmission tower-line system

  • Tian, Li;Pan, Haiyang;Ma, Ruisheng;Dong, Xu
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.305-315
    • /
    • 2019
  • Extremely long-span transmission tower-line system is an indispensable portion of an electricity transmission system, and its failures or collapse can impact on the entire electricity grid, affect the modern life, and cause great economic losses. It is therefore imperative to investigate the failure and safety of the transmission tower subjected to ground motions. In the present study, a detailed finite element (FE) model of a representative extremely long-span transmission tower-line system is established. A segmental damage indicator (SDI) is proposed to quantitatively assess the damage level of each segment of the transmission tower under earthquakes. Additionally, parametric studies are conducted to investigate the influence of different ground motions and incident angles on the ultimate capacity and weakest segment of the transmission tower. Finally, the collapse fragility curve in terms of the maximum SDI value and PGA is plotted for the exampled transmission tower. The results show that the proposed SDI can quantitatively assess the damage level of the segments, and thus determine the ultimate capacity and weakest segment of the transmission tower. Moreover, the different ground motions and incident angles have a significant influence on the SDI values of the transmission tower, and the collapse fragility curve is utilized to evaluate the collapse resistant capacity of the transmission tower subjected to ground motions.

Methodology of battle damage assessment in the naval wargame model - Forcusing on damage assessment of warship - (해상전 워게임모델의 교전 피해평가 수준 및 산정방법론 - 함정 피해평가를 중심으로 -)

  • Kim, Bong Seok;Choi, Bong Wan;Kim, Chong Su
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.53-64
    • /
    • 2021
  • Wargame is a simulated military operation with certain rules, specifications, and procedures, in which soldiers can virtually and indirectly experience the war. The ROK Navy operates the Cheonghae model, a training wargame model for helping commanders and staff master the procedures for conducting the war. It is important for commanders, staff and analysts to know whether a warship can perform its missions and how long it can last during a war. In existing model, the Cheonghae, the probability of kill of a warship is calculated simply considering the number of tonnage without any stochastic elements, and the warship's mission availability is also determined based on predetermined values. With this model, it is difficult to get a value of the probability of kill that makes sense. In this dissertation, the author has developed a probabilistic model in which the warship vulnerability data of ROK-JMEM can be used. A conceptual model and methodology that can evaluate the mission performance of personnel, equipment, and supplies has been proposed. This can be expanded to a comprehensive assessment of wartime warship loss rates by integrating damage rates for personnel, equipment, and supplies in wartime.

Development of Empirical Formulas for Approximate Spectral Moment Based on Rain-Flow Counting Stress-Range Distribution

  • Jun, Seockhee;Park, Jun-Bum
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.257-265
    • /
    • 2021
  • Many studies have been performed to predict a reliable and accurate stress-range distribution and fatigue damage regarding the Gaussian wide-band stress response due to multi-peak waves and multiple dynamic loads. So far, most of the approximation models provide slightly inaccurate results in comparison with the rain-flow counting method as an exact solution. A step-by-step study was carried out to develop new approximate spectral moments that are close to the rain-flow counting moment, which can be used for the development of a fatigue damage model. Using the special parameters and bandwidth parameters, four kinds of parameter-based combinations were constructed and estimated using the R-squared values from regression analysis. Based on the results, four candidate empirical formulas were determined and compared with the rain-flow counting moment, probability density function, and root mean square (RMS) value for relative distance. The new approximate spectral moments were finally decided through comparison studies of eight response spectra. The new spectral moments presented in this study could play an important role in improving the accuracy of fatigue damage model development. The present study shows that the new approximate moment is a very important variable for the enhancement of Gaussian wide-band fatigue damage assessment.

Estimation of Erosion Damage of Armor Units of Rubble Mound Breakwaters Attacked by Typhoons (태풍에 의한 경사식 방파제의 피복재 침식 피해 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.5
    • /
    • pp.295-305
    • /
    • 2010
  • Although the rubble mound breakwaters in Korea have been damaged by typhoons almost every year, quantification of erosion of armor block have seldomly been made. In this paper, the damage of armor units is standardized by the relative damage. In the case where the number of damaged units is reported, it is divided by the total number of units to calculate the relative damage. In the case where the rehabilitation cost is reported, the relative damage is calculated by using its relationship with the present value of the past rehabilitation cost. The relative damage is shown to have strong correlations with the typhoon parameters such as nearest central air pressure and maximum wind speed at each site. On the other hand, the existing numerical methods for calculating the cumulative damage are compared with hydraulic model tests. The method of Melby and Kobayashi (1998) is shown to give a reasonable result, and it is used to calculate the relative damage, which is compared with the measured damage. A good agreement is shown for the East Breakwater of Yeosu Harbor, while poor agreement is shown for other breakwaters. The poor agreement may be because waves of larger height than the design height occurred due to strong typhoons associated with climate change so that the relative damage increased during the last several decades.