• Title/Summary/Keyword: Damage Type

Search Result 2,311, Processing Time 0.028 seconds

The Sinkage Speed by Ship's under Water Damage (선저파공이 침수속도에 미치는 영향)

  • 박석주;이동섭;박성현
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.4
    • /
    • pp.417-422
    • /
    • 2001
  • Every ship might be exposed to collision, grounding and/or various accidents. They may make some underwater holes on the hull. An underwater damage would cause her loss of buoyancy, trim, and inclination. Although a ship has some provisions against these accidents, if the circumstance is serious, she would be sunk or upsetted. Because of varieties of type of accidents, one could not prepare all of them. Many subdivision could prevent them, but it is difficult to realize it due to rising costs. This paper deals with physical phenomena of sinkage and an application on box type ship, and some results are earned as follows; 1. sinkage speed up to the level of the damage hole is increased proportionally, and is decreased proportionally after filling the level. 2. the curve of draft shows cup type of second order polynomial up to the damage hole level, and shows cap type of second order polynomial after filling the level. 3. if damage occurs beneath half of the draft, changes of head and displacement, and sinking speed follow almost straight lines. 4. by careful observation, sinkage speed could be predicted.

  • PDF

Fatigue Durability Analysis due to the Classes of Automotive Wheels (자동차 휠의 종류별 피로 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.68-74
    • /
    • 2014
  • This study analyzes structural stress and fatigue about three types of automotive wheels. As maximum equivalent stresses at 1, 2 and 3 types become lower than the yield stress of material and deformations become minute, theses types are thought be safe on durability. Type 2 model has the most fatigue life among three kinds of types and the rest of models with fatigue lives are shown in the order of type 1 and 3. As the most fatigue frequency of type 2 model happens at the state of average stress and amplitude stress on the stress range narrower than type 1 or 3, type 2 model becomes most stable. In case of type 2 with the state near the average stress of 0 MPa and the amplitude stress of 300MPa, the possibility of maximum damage becomes 30%. This stress state can be shown as the most damage possibility. These study results can be effectively utilized with the design on automotive wheel by anticipating and investigating prevention and durability against its damage.

Damage Assessment According to Damage Types and Influential Factors of Stone Pagoda Structure (석탑문화재 손상 유형 및 영향 요인에 따른 손상도 평가)

  • Kim, Ho-Soo;Hong, Souk-il;Jeon, Gun-Woo;Kim, Derk-Moon;Park, Chan-Min
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.87-97
    • /
    • 2018
  • Stone pagoda structures have continued to be aged due to the combination of various damage factors. However, some studies on nonstructural damage have been carried out, but assessment studies on structural damage have not been done in various ways. Therefore, in this study, structural and nonstructural influencing factors according to the damage types are classified and the damage assessment according to the structural influencing factors affecting the behavior of the stone pagoda structure is performed. In addition, the damage rating classification criteria for each type of structural damages or damage locations are presented, and the damage index is calculated by providing the criteria for the classification of damage according to the degree of damage to which the damage is caused. Therefore, this study can evaluate quantitatively the damage status of stone pagoda structures.

Study on Bike Frame due to Nonuniform Fatigue Loads (불규칙 피로 하중을 받는 자전거 프레임에 대한 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.133-140
    • /
    • 2012
  • In this study, 3 kinds of models about bike frame are simulated with static structural analysis, And fatigue life, damage and durability according to fatigue load are analyzed. A bike frame model with diamond type is compared with another model on the reinforced support with its type. In case of the reinforced support type, maximum equivalent stress or total deformation is shown with 10% or 20% more than the diamond type respectively. At both types of models, the trends of fatigue life and damage at both types are same. 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable among the cases of nonuniform fatigue loads. In case of 'Sample history' with the average stress of 0 to -1MPa and the amplitude stress of 0 to 1MPa, the possibility of maximum damage becomes 3%. This stress state can be shown with 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. In case of the reinforced support type, fatigue life becomes shorter and damage probability becomes larger at the right side installed with support than diamond type. The structural result of this study can be effectively utilized with the design on bike frame by investigating prevention and durability against its damage.

Experimental Evaluation of PC Non-Bearing Wall System for the Damage Control of RC Wall Type Apartments (RC 벽식 아파트의 손상 제어를 위한 PC 비내력벽 시스템의 실험적 평가)

  • Moon, Kyo Young;Kim, Siyun;Kim, Sung Jig;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.77-84
    • /
    • 2019
  • This study introduces a newly developed PC non-bearing wall system to prevent the damage of RC wall-type apartments that have been heavily damaged by the 2017 Pohang Earthquake. In order to evaluate the performance of the developed PC non-bearing wall system, a static cyclic test is conducted. The prototype of test specimen is from the RC wall-type apartment which has been severely damaged by the 2017 Pohang Earthquake. The specimen with the conventional non-bearing wall system showed the similar damage of RC wall type apartment suffered from the Pohang Earthquake. In case of the specimen with the developed PC non-bearing wall system, cracks and damages were not transmitted between the walls due to the seismic slit and there were almost no cracks in the non-bearing walls. Therefore, the proposed non-bearing wall system, separated from the structural walls, could prevent spreading cracks to bearing walls and make it possible to effectively control damage due to earthquake loads.

Creep Analysis of Type 316LN Stainless Steel by Reference Stress Concept (참조응력 개념에 의한 316LN 강의 크리프 해석)

  • Kim, Woo-Gon;Kim, Dae-Whan;Ryu, Woo-Seog
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.123-128
    • /
    • 2001
  • The creep constants which are used to the reference stress equations of creep damage were obtained to type 316LN stainless steel, and their determining methods were described in detail. Typical Kachanov and Rabotnov(K-R) creep damage model was modified into the damage equations with reference stress concepts, and the modified equations were applied practically to type 316LN stainless steel. In order to determine the reference stress value, a series of high-temperature tensile tests and creep tests were accomplished at $550^{\circ}C$ and $600^{\circ}C$. By using the experimental creep data, the creep constants used in reference stress equations could be obtained to type 316LN stainless steel, and a creep curve on rupture strain was predicted. The reference stress concept on creep damage can be utilized easily as a design tool to predict creep life because the process, which is quantified by the measurement of voids or micro cracks during creep, is omitted.

  • PDF

Using multi-type sensor measurements for damage detection of shear connectors in composite bridges under moving loads

  • Fan, Xingyu;Li, Jun;Hao, Hong;Chen, Zhiwei
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.521-527
    • /
    • 2017
  • This paper proposes using the multi-type sensor vibration measurements, such as from a relative displacement sensors and a traditional accelerometer for the damage detection of shear connectors in composite bridge under moving loads. Hilbert-Huang Transform (HHT) spectra of these responses will be fused with a data fusion approach i.e., Dempster-Shafer method, to detect the damage of shear connectors. Experimental studies on a composite bridge model in the laboratory are conducted to demonstrate the effectiveness and performance of using the proposed approach in detecting the damage of shear connectors in composite bridges. Both undamaged and damaged scenarios are considered. The detection results with the data fusion of multi-type sensor measurements show a more reliable and robust performance and accuracy, avoiding the false identifications.

Material and geometric properties of hoop-type PZT interface for damage-sensitive impedance responses in prestressed tendon anchorage

  • Dang, Ngoc-Loi;Pham, Quang-Quang;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.129-155
    • /
    • 2022
  • In this study, parametric analyses on a hoop-type PZT (lead-zirconate-titanate) interface are performed to estimate the effects of the PZT interface's materials and geometries on sensitivities of impedance responses under strand breakage. The paper provides a guideline for installing the PZT interface suitable in tendon anchorages for damage-sensitive impedance signatures. Firstly, the concept of the PZT interface-based impedance monitoring technique in prestressed tendon anchorage is briefly described. A FE (finite element) analysis is conducted on a multi-strands anchorage equipped with a hoop-type PZT interface for analyzing materials and geometric effects. Various material properties, geometric sizes of the interface, and PZT sensor are simulated under two states of prestressing force for acquiring impedance responses. Changes in impedance signals are statistically quantified to analyze the effect of these factors on damage-sensitive impedance monitoring in the tendon anchorage. Finally, experimental analyses are performed to demonstrate the effects of materials and geometrical properties of the PZT interface on damage-sensitive impedance monitoring.

Assessment of Interruption Costs by Industrial Customer Type

  • Choi, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.448-454
    • /
    • 2006
  • As the power industry moves towards open competition, a need has arisen for appropriate methodology to evaluate power system reliability by using customer Interruption costs. This paper presents an assessment of the interruption costs by industrial customer type in Korea using customer survey methodology. When various research results are examined, the customer damage survey methodology becomes much more generalized. Especially, in the case of industrial customers, it is known that evaluation by the customer damage survey is more useful. Accordingly, this paper selected the customer damage survey method to evaluate the interruption costs by industrial customer type in Korea considering interruption and customer characteristics.

Damage detection in truss bridges using transmissibility and machine learning algorithm: Application to Nam O bridge

  • Nguyen, Duong Huong;Tran-Ngoc, H.;Bui-Tien, T.;De Roeck, Guido;Wahab, Magd Abdel
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.35-47
    • /
    • 2020
  • This paper proposes the use of transmissibility functions combined with a machine learning algorithm, Artificial Neural Networks (ANNs), to assess damage in a truss bridge. A new approach method, which makes use of the input parameters calculated from the transmissibility function, is proposed. The network not only can predict the existence of damage, but also can classify the damage types and identity the location of the damage. Sensors are installed in the truss joints in order to measure the bridge vibration responses under train and ambient excitations. A finite element (FE) model is constructed for the bridge and updated using FE software and experimental data. Both single damage and multiple damage cases are simulated in the bridge model with different scenarios. In each scenario, the vibration responses at the considered nodes are recorded and then used to calculate the transmissibility functions. The transmissibility damage indicators are calculated and stored as ANNs inputs. The outputs of the ANNs are the damage type, location and severity. Two machine learning algorithms are used; one for classifying the type and location of damage, whereas the other for finding the severity of damage. The measurements of the Nam O bridge, a truss railway bridge in Vietnam, is used to illustrate the method. The proposed method not only can distinguish the damage type, but also it can accurately identify damage level.