• Title/Summary/Keyword: Damage Strength

Search Result 2,007, Processing Time 0.025 seconds

A Study on 4 Point Bending Strength of Aircraft Composite Specimens (항공기 복합재료 적용 시편의 4점 굽힘 강도 연구)

  • Kong, Changduk;Park, Hyunbum;Lim, Seongjin
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.23-26
    • /
    • 2010
  • In this study, it was performed damage assesment of small scale composite aircraft developing. This aircraft adopted the sandwich structure to skin of wing. This study aims to investigate the residual strength of sandwich composites with Nomex honeycomb core and carbon fiber face sheets after the open hole damage by the experimental investigation. The 4-point bending tests were used to find the bending strength, and the open hole was applied to introduce the simulated damage on the specimen. The bending strength test results after open hole was compared with the results of no damaged specimen test. The FEM analysis is assessed via an experimental 4-point bending test.

  • PDF

Installation Damage Assessment of Geogrids by Laboratory Tester (실내 시험기에 의한 지오그리드의 시공 시 손상 평가)

  • Jin, Yong-Bum;Byun, Sung-Won;Jeon, Han-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.43-47
    • /
    • 2006
  • Installation damage of 3 types of geogrids were evaluated with compaction condition. This experimental test was in accordance with ENV ISO 10722-1. Tensile strength of geogrids were decreased with number of cyclic compaction loading without regard to kind of filled material and it was seen that strength decrease tendency showed the dependence on geogrid type. Woven and warp-knitted type geogrids showed the bigger decrease of tensile strength than welded type geogrids.

  • PDF

Residual Longitudinal Strengths of Asymmetrically Damaged Ships (비대칭 손상 선박의 잔류 종강도 평가)

  • Choung, Joon-Mo;Lee, Min-Seong;Jeon, Sang-Ik;Nam, Ji-Myung;Ha, Tae-Bum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.246-253
    • /
    • 2011
  • This paper presents estimation of deterministic damage extents and locations due to collision and grounding which are defined by ABS guideline and DNV ship rules. It is noted that the overall extents of damages from DNV are larger than those from ABS. Nonlinear FEAs are carried out to predict residual longitudinal strength of hull girder with asymmetric severe damages. The accuracy of the applied FEA procedure is proved by comparing FEA result with test result of a 1/3-scaled frigate. The investigated vessels are a VLCC and a large-sized bulker for which evenly distributed heeling angles from $0^{\circ}$(sagging) to $180^{\circ}$(hogging) by $30^{\circ}$ due to damage-induced flooding are taken into account. The reduction ratios of the ultimate residual strength for the damaged cases to those for the intact sagging case are shown. It is proved that the grounding damage case under DNV assumption reveals most critical the residual strength. The design formulas are presented to assure minimum residual ultimate moment after damage.

Relationship between angiotensin-converting enzyme gene polymorphism and muscle damage parameters after eccentric exercise

  • Kim, Jooyoung;Kim, Chang-Sun;Lee, Joohyung
    • Korean Journal of Exercise Nutrition
    • /
    • v.17 no.2
    • /
    • pp.25-34
    • /
    • 2013
  • This study was conducted to investigate the relationship between ACE gene polymorphism and muscle damage parameters after eccentric exercise. 80 collegiate males were instructed to take an eccentric exercise with the elbow flexor muscle through the modified preacher curl machine for 2 sets of 25 cycles (total 50 cycles). The maximal isometric strength, muscle soreness, creatine kinase (CK), and myoglobin (Mb) were measured before exercise, and 0, 24, 48, 72, and 96 hrs after exercise. The result showed that after the eccentric exercise, the maximal isometric strength significantly decreased by more than 50% (p < 0.001) and the muscle soreness, CK, and Mb significantly increased compared to those before the exercise (p < 0.001). The ACE gene polymorphism of the subjects was classified using real-time polymerase chain reaction (real-time PCR). The result showed that it consisted of 38 cases of type II (46.4%), 33 cases of type ID (43.4%), and 9 cases of type DD (10.2%). The Hardy-Weinberg equilibrium for ACE gene polymorphism was shown to have p = 0.653, which showed that each allele was evenly distributed. Although significant differences in the changes in the maximal isometric strength, muscle soreness, CK, and Mb were found according to time course (p < 0.001), no significant differences in the changes in the maximal isometric strength, muscle soreness, CK, and Mb were found according to ACE gene polymorphism. Furthermore, no significant difference in the changes in the muscle damage parameters was found according to interaction between ACE gene polymorphism and time course (p > 0.05). In conclusion, the level of the muscle damage parameters changed in the injured muscle after eccentric exercise, but these changes in the muscle damage parameters were not affected by ACE gene polymorphism. The result of this study indicates that ACE gene is not a candidate gene that explains muscle damage.

Deterioration in strength of studs based on two-parameter fatigue failure criterion

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.239-250
    • /
    • 2017
  • In the concept of two-parameter fatigue failure criterion, the material fatigue failure is determined by the damage degree and the current stress level. Based on this viewpoint, a residual strength degradation model for stud shear connectors under fatigue loads is proposed in this study. First, existing residual strength degradation models and test data are summarized. Next, three series of 11 push-out specimen tests according to the standard push-out test method in Eurocode-4 are performed: the static strength test, the fatigue endurance test and the residual strength test. By introducing the "two-parameter fatigue failure criterion," a residual strength calculation model after cyclic loading is derived, considering the nonlinear fatigue damage and the current stress condition. The parameters are achieved by fitting the data from this study and some literature data. Finally, through verification using several literature reports, the results show that the model can better describe the strength degradation law of stud connectors.

Effect of Temperature on Low Velocity Impact Characteristics of Composite Laminates (복합적층재의 온도에 의한 저속충격특성)

  • 한영욱;김후식;김재훈;이영신;조정미;박병준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.93-96
    • /
    • 2002
  • Instrumented impact tests and compression-after-impact(CAI) tests have been used to evaluate the effect of temperature on the low-velocity impact characteristics of phenolic matrix composites reinforced with various woven glass fabric. Impact characteristics and damage area in laminates are evaluated by C-scan. It is shown that the extent of damage and residual compressive strength of the laminates vary with energy level and impact test temperature. The damage area increases with increasing impact energy and temperature. All these observations indicate reduced impact damage resistance and damage tolerance of the laminates at elevated temperature.

  • PDF

Investigation of Defects and Damage on External Wall in Brick Structures of Modern Architectural Properties - Focused on "Naju Noahn Catholic Church" - (벽돌조 건축문화재 외벽체의 훼손 현황 및 원인 조사 -나주노안천주교회를 중심으로-)

  • Woo, Nam-Sic;Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • This study is to diagnose causes of damage and defects on external walls of brick structures, focused on "Naju Noahn" Catholic Church of Modern Architectural Properties. The causes of crack and deflection are overloading, shortage strength of arch. Among those, main cause is cauesd by shortage strength of arch because center of arch is dislocated and skew back of arch is small angle. The causes of damage and elimination are weathering, plants of friction, freezing and thawing, durability decrement of material and attach defection. This defects and damage is caused by high-moisture that occurs in soil. The causes of discoloration are change of soil moisture and flimsy brickwork. These defects and damage are mainly occurred in coping of cornice, weathering of window sill.

Prediction of Deformation Mechanism and Fracture for an Auto-Part with Advanced High Strength Steel using Solid Element and Damage Theory (연속체요소 및 손상이론을 이용한 고강도강 차량부품의 변형기구와 파단 예측)

  • Kwak, J.H.;Yoon, S.J.;Kim, S.H.;Park, J.K.;Han, H.G.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.293-299
    • /
    • 2017
  • In this paper, finite element stamping analysis was carried out for the front lower arm to examine the applicability of solid element with damage theory to predict shear fracture phenomena induced by sheared edge as well as deformation mechanisms. Mechanical properties related to deformation and damage theory were determined from tensile test. Shear fracture was predicted by normalized Cockcroft-Latham model with initial imposition of the damage value along the sheared edge. Simulation results illustrated that the analysis with solid element and damage theory predicted edge profile, strain distribution, and forming load more accurately than the analysis with shell element. Simulation with solid element can also predict the shear fracture more exactly comparing to analysis with shell element and forming limit curve.

A Study on the Strength of Concrete Affected by Revibration (콘크리트 강도의 진동영향에 관한 연구)

  • 정하선;권영웅;오용복
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.37-40
    • /
    • 1991
  • This experimental study was performed to find out the vibration damage of concrete. The major factors of this test were duration of vibration and curing age of concrete when vibrated. According to the serial test results, construction vibrations may cause critical damage to the concrete structures if the age of concrete when vibrated is about 4 hours.

  • PDF