• Title/Summary/Keyword: Damage Strength

Search Result 2,007, Processing Time 0.021 seconds

Fragility analysis of R/C frame buildings based on different types of hysteretic model

  • Borekci, Muzaffer;Kircil, Murat S.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.795-812
    • /
    • 2011
  • Estimation of damage probability of buildings under a future earthquake is an essential issue to ensure the seismic reliability. Fragility curves are useful tools for showing the probability of structural damage due to earthquakes as a function of ground motion indices. The purpose of this study is to compare the damage probability of R/C buildings with low and high level of strength and ductility through fragility analysis. Two different types of sample buildings have been considered which represent the building types mentioned above. The first one was designed according to TEC-2007 and the latter was designed according to TEC-1975. The pushover curves of sample buildings were obtained via pushover analyses. Using 60 ground motion records, nonlinear time-history analyses of equivalent single degree of freedom systems were performed using bilinear hysteretic model and peak-oriented hysteretic model with stiffness - strength deterioration for each scaled elastic spectral displacement. The damage measure is maximum inter-story drift ratio and each performance level considered in this study has an assumed limit value of damage measure. Discrete damage probabilities were calculated using statistical methods for each considered performance level and elastic spectral displacement. Consequently, continuous fragility curves have been constructed based on the lognormal distribution assumption. Furthermore, the effect of hysteresis model parameters on the damage probability is investigated.

Electrochemical Characteristics with Cavitation Amplitude Under Cavitation Erosion of 6061-T6 in Seawater (Al 6061-T6 합금의 해수 내 캐비테이션 진폭에 따른 캐비테이션-침식 조건하에서 전기화학적 특성)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.318-325
    • /
    • 2020
  • Generally, Al alloys of 5000 and 6000 series show excellent weldability, workability, and specific strength, and are widely used in ship building. A combined experiment via cavitation erosion and corrosion damage involving 6061-T6 Al alloy was performed using potentiodynamic polarization under cavitation erosion (hybrid experiments) with amplitude (cavitation strength). The corrosion current density was approximately 52-fold higher at 30 μm than under static conditions, suggesting that the amplitude greatly affected the damage. The degree of damage increased with increasing cavitation amplitude. After the hybrid experiment, the corrosion rate was compared according to the weight loss and damage depth, and the relationship between the two values was expressed as alpha value. The alpha (α) values at amplitudes of 5 μm, 10 μm and 30 μm were 5.11, 12.81 and 8.74, respectively, suggesting that the α value at 10 μm was greater than at 5 μm, and indicating local corrosion damage. However, the α value at 30 μm was smaller than that of 10 μm, which is attributed to higher damage via uniform corrosion than damage induced by local corrosion.

Assessment of Combined Effect of Installation Damage and Creep Deformation of Geogrids (지오그리드의 시공 시 손상 및 크리프 변형의 복합효과 평가)

  • Cho Sam-Deok;Lee Kwng-Wu;Oh Se-Yong;Lee Do-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.153-161
    • /
    • 2005
  • A series of installation damage tests and creep tests are performed to assess the combined effect of installation damage and creep deformation far the long-term design strength of geogrid reinforcement. Three types of geogrids are used to investigate the influence of the geogrid types. From the experimental results, it is shown that installation damage and creep deformation of geogrids significantly depends on the polymer types of the geogrids and the larger the installation damage, the more the combined effect of installation damage and creep deformation. In addition, The results of this study show that the tensile strength reduction factor, RF, considering the combined effect between installation damage and creep deformation is less than that calculated by the current design practice which calculates the long-term design strength of geogrids damaged during installation by multiplying two partial safety factors, $RF_{ID}$ and $RF_{CR}$.

Condition assessment of raking damaged bulk carriers under vertical bending moments

  • Kim, Do Kyun;Yub, Su Young;Choi, Han Suk
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.629-644
    • /
    • 2013
  • This paper concerns about the raking damages on the ultimate residual hull girder strength of bulk carriers by applying the modified R-D diagram (advanced method). The limited raking damage scenarios, based on the IMO's probability density function of grounding accidents, were carried out by using sampling technique. Recently, innovative method for the evaluation of the structural condition assessment, which covers the residual strength and damage index diagram (R-D diagram), was proposed by Paik et al. (2012). This concept is applied in the present study and modified R-D diagram, which can be considered vessel size effect, is then proposed. Four different types of bulk carrier structures, i.e., Handysize (37K), Supramax (57K), Kamsarmax (82K) and Capesize (181K) by Common Structural Rule (CSR), were applied to draw the general tendency. The ALPS/HULL, intelligent supersize finite element method, was employed for the ultimate longitudinal strength analysis. The obtained empirical formulas will be useful for the condition assessment of bulk carrier structures. It can also cover different sizes of the bulk carriers in terms of ultimate longitudinal strength. Important insights and findings with useful guidelines developed in this study are summarized.

Loading Rate Effects During Static Indentation and Impact on Silicon Carbide with Small Sphere (탄화규소에 구형입자의 정적압입 및 충격시 부하속도의 영향)

  • Shin, Hyung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3847-3855
    • /
    • 1996
  • In order to study the relationship between static and cynamic behaviors of silion caride, both quasi-static indentaiton and impact experiments of spherical particle have been conducted. The difference inmaterial behavior when using the two mehtods suggests a loading rate difference in the damate pattrern and fracture strength of silicon carbide. This investigation showed some difference in damage pattern according to particla property, especially inthe case of particle impact. There was no differences in deformation behaviors according to the loading rate when the crater profiles were compared with each other at the same contact radius. From the result of residual strength evaluation, it was found that the strength degradation began at the initiation of ring crack and its behavior was colsely related to morphologies of the damage developed which was also dependent upon the extent of deformation atthe loaidng point. In the case of static indentation, there didnot exist the particle property effects onthe strength degradation behavior.

Fatigue Failure Characteristics of Steel Fiber Reinforced Concrete Considering Cumulative Damage (누적손상을 고려한 강섬유보강 콘크리트의 피로파괴 특성)

  • 김동호;홍창우;이주형;이봉학
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.117-126
    • /
    • 2002
  • Concrete containing discontinuous discrete steel fiber in a normal concrete is called steel fiber reinforced concrete(SFRC). Tensile as well as flexural strengths of concrete could be substantially increased by introducing closely spaced fibers which delay the onset of tension cracks and increase the tension strength of cracks. However, many properties of SFRC have not been investigated, especially properties on repeated loadings. Thus, the purposes of this dissertation is to study the flexural fatigue characteristics of SFRC considering cumulative damage. A series of experimental tests such as compressive strength, splitting tensile strength, flexural strength, flexural fatigue, and two steps stress level fatigue were conducted to clarify the basic properties and fatigue-related properties of SFRC. The main experimental variables were steel fiber fraction (0, 0.4, 0.7, 1, 1.5%), aspect ratio (60, 83). The principal results obtained through this study are as follows: The results of flexural fatigue tests showed that the flexural fatigue life of SFRC is approxmately 65% of ultimate strength, while that of plain is less than 58%. Especially, the behavior of flexural fatigue life shows excellent performance at 1.0% of steel-fiber volume fraction. The cumulative damage test of high-low two stress levels is within the value of 0.6 ∼ 1.1, while that of low-high stress steps is within the value of 2.4 ∼ 4.0.

Statistical Evaluation for Residual Strength of Impacted Composite Materials (충격손상 복합재료의 잔류강도저하거동에 대한 통계적 평가)

  • Kang, Ki-Weon;Lee, Seung-Pyo;Lee, Jin-Soo;Koh, Byung-Kab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.426-434
    • /
    • 2010
  • This study is experimentally performed to evaluate the strength reduction behavior and its statistical properties of plain woven glass/epoxy composites. The results indicate that the major impact damage of plain woven glass/epoxy composites is the fiber breakage and matrix crack, whereas the dominant impact damage of unidirectional carbon/epoxy laminates is the delamination, which depends on the stacking sequence. The residual strength prediction models, previously proposed on unidirectional laminates, are applied to evaluate the residual strength of plain woven glass/epoxy composites with impact damage. Among these models, the results by Caprino and Avva's model have a good agreement with the experimental results. To investigate the variability of residual strength of the impacted composite materials, a statistical model was proposed and its results were in conformance with the experimental results regardless of their thickness.

On the effects of hull-girder vibration upon fatigue strength of a Post-Panamax container ship disaggregated by short-term sea state

  • Fukasawa, Toichi;Mukai, Keiichi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.431-441
    • /
    • 2014
  • The effects of hull-girder vibration on the fatigue strength of a Post-Panamax container ship are discussed in the present paper. Firstly, the short-term sea states are categorized according to the occurrence probability of each sea state. Time histories of hull-girder stress in short-term sea states are calculated by means of a nonlinear simulation code of ship response assuming that the hull-girder is rigid and flexible. Then, the calculated stress peaks are processed by the rainflow counting method, where two different counting procedures are used based on the considerations of crack propagation behaviors. Finally, the fatigue damage in life time of the ship in each categorized short-term sea state is estimated by means of Miner's rule. Based on the calculated results, the effects of hull-girder vibrations on the fatigue damage are clarified by disaggregated damage from short-term sea state.

Structural Strength Analysis of ATV Knuckle (ATV 너클의 구조강도 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.137-144
    • /
    • 2013
  • This study analyzes structural analysis with fatigue and natural frequency on ATV knuckle. The maximum equivalent stresses are happened at the end of knuckle in case of model 1, 2 and 3. As these stresses are below the allowable stress, these models can be stable structurally. The fatigue damage possibility at model 1 becomes more than model 2 and 3. Model 2 or 3 has more durability than model 1 at fatigue. As the resonances are happened at the frequency more than 2000 Hz in case of model 1, 2 and 3, there is no resonance possibilities at real driving. Prevention against damage and durability prediction on automotive chassis parts can be effectively improved by applying this study result on knuckle and improving structural strength.

Study on Optimum Compartment of 300K VLOC Considered Longitudinal Strength and Bottom Damage (종강도 및 Bottom Damage를 고려한 300K VLOC의 최적구획검토)

  • Park, Ji-Yun;Koo, Ja-Won
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.39-42
    • /
    • 2011
  • The last years have seen a dramatic increase of the new-building orders for Very Large Ore Carriers(VLOC), mainly driven by the increasing demand for iron ore imports from Australia and brazil to the steel mills in china. Thus the vibrant research of VLOC aimed cost-cutting by optimum compartment have conducted in recent years. In this study, we are also trying to find ways to reduce longitudinal strength by optimum compartment and check additionally whether the modified compartments were satisfied with SOLAS bottom damage.

  • PDF