• Title/Summary/Keyword: Damage Model

Search Result 4,325, Processing Time 0.032 seconds

Analysis on damage of RC frames retrofitted with buckling-restrained braces based on estimation of damage index

  • Liu, Ruyue;Yang, Yong
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.781-791
    • /
    • 2019
  • Earthquakes most often induce damage to structures, resulting in the degradation or deterioration of integrity. In this paper, based on the experimental study on 5 RC frames with different span length and different layout of buckling-restrained braces, the seismic damage evaluation law of RC frame with buckling-restrained braces was analyzed, and then the seismic damage for different specimens was calculated using different damage models to study the damage evolution. By analyzing and comparing the observation in test and the calculated results, it could be found that, damage evolution models including Gosain model, Hwang model as well as Ou model could better simulate the development of damage during cyclic loading. Therefore, these 3 models were utilized to analyze the development of damage to better demonstrate the evolution law for structures with different layout of braces and under different axial compression ratios. The results showed that from all layouts of braces studied, the eccentrically braced frame behaved better under larger deformation with the damage growing slowly. It could be deduced that the link beam benefited the seismic performance of structure and alleviated the damage by absorbing high values of energy.

Blast load induced response and the associated damage of buildings considering SSI

  • Mahmoud, Sayed
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.349-365
    • /
    • 2014
  • The dynamic response of structures under extremely short duration dynamic loads is of great concern nowadays. This paper investigates structures' response as well as the associated structural damage to explosive loads considering and ignoring the supporting soil flexibility effect. In the analysis, buildings are modeled by two alternate approaches namely, (1) building with fixed supports, (2) building with supports accounting for soil-flexibility. A lumped parameter model with spring-dashpot elements is incorporated at the base of the building model to simulate the horizontal and rotational movements of supporting soil. The soil flexibility for various shear wave velocities has been considered in the investigation. In addition, the influence of variation of lateral natural periods of building models on the obtained response and peak response time-histories besides damage indices has also been investigated under blast loads with different peak over static pressures. The Dynamic response is obtained by solving the governing equations of motion of the considered building model using a developed Matlab code based on the finite element toolbox CALFEM. The predicted results expressed in time-domain by the building model incorporating SSI effect are compared with the corresponding model results ignoring soil flexibility effect. The results show that the effect of surrounding soil medium leads to significant changes in the obtained dynamic response of the considered systems and hence cannot be simply ignored in damage assessment and response time-histories of structures where it increases response and amplifies damage of structures subjected to blast loads. Moreover, the numerical results provide an understanding of level of damage of structure through the computed damage indices.

BIM model-based structural damage localization using visual-inertial odometry

  • Junyeon Chung;Kiyoung Kim;Hoon Sohn
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.561-571
    • /
    • 2023
  • Ensuring the safety of a structure necessitates that repairs are carried out based on accurate inspections and records of damage information. Traditional methods of recording damage rely on individual paper-based documents, making it challenging for inspectors to accurately record damage locations and track chronological changes. Recent research has suggested the adoption of building information modeling (BIM) to record detailed damage information; however, localizing damages on a BIM model can be time-consuming. To overcome this limitation, this study proposes a method to automatically localize damages on a BIM model in real-time, utilizing consecutive images and measurements from an inertial measurement unit in close proximity to damages. The proposed method employs a visual-inertial odometry algorithm to estimate the camera pose, detect damages, and compute the damage location in the coordinate of a prebuilt BIM model. The feasibility and effectiveness of the proposed method were validated through an experiment conducted on a campus building. Results revealed that the proposed method successfully localized damages on the BIM model in real-time, with a root mean square error of 6.6 cm.

Assessment of sensitivity-based FE model updating technique for damage detection in large space structures

  • Razavi, Mojtaba;Hadidi, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.261-281
    • /
    • 2020
  • Civil structures may experience progressive deterioration and damage under environmental and operational conditions over their service life. Finite element (FE) model updating method is one of the most important approaches for damage identification in structures due to its capabilities in structural health monitoring. Although various damage detection approaches have been investigated on structures, there are limited studies on large-sized space structures. Thus, this paper aims to investigate the applicability and efficiency of sensitivity-based FE model updating framework for damage identification in large space structures from a distinct point of view. This framework facilitates modeling and model updating in large and geometric complicated space structures. Considering sensitivity-based FE model updating and vibration measurements, the discrepancy between acceleration response data in real damaged structure and hypothetical damaged structure have been minimized through adjusting the updating parameters. The feasibility and efficiency of the above-mentioned approach for damage identification has finally been demonstrated with two numerical examples: a flat double layer grid and a double layer diamatic dome. According to the results, this method can detect, localize, and quantify damages in large-scaled space structures very accurately which is robust to noisy data. Also, requiring a remarkably small number of iterations to converge, typically less than four, demonstrates the computational efficiency of this method.

Modeling of local buckling in tubular steel frames by using plastic hinges with damage

  • Inglessis, Pether;Medina, Samuel;Lopez, Alexis;Febres, Rafael;Florez-Lopez, Julio
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.21-34
    • /
    • 2002
  • A model of the process of local buckling in tubular steel structural elements is presented. It is assumed that this degrading phenomenon can be lumped at plastic hinges. The model is therefore based on the concept of plastic hinge combined with the methods of continuum damage mechanics. The state of this new kind of inelastic hinge is characterized by two internal variables: the plastic rotation and the damage. The model is valid if only one local buckling appears in the plastic hinge region; for instance, in the case of framed structures subjected to monotonic loadings. Based on this damage model, a new finite element that can describe the development of local buckling is proposed. The element is the assemblage of an elastic beamcolumn and two inelastic hinges at its ends. The stiffness matrix, that depends on the level of damage, the yielding function and the damage evolution law of the two hinges define the new finite element. In order to verify model and finite element, several small-scale frames were tested in laboratory under monotonic loading. A lateral load at the top of the frame was applied in a stroke-controlled mode until local buckling appears and develops in several locations of the frame and its ultimate capacity was reached. These tests were simulated with the new finite element and comparison between model and test is presented and discussed.

Damage detection of shear buildings using frequency-change-ratio and model updating algorithm

  • Liang, Yabin;Feng, Qian;Li, Heng;Jiang, Jian
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2019
  • As one of the most important parameters in structural health monitoring, structural frequency has many advantages, such as convenient to be measured, high precision, and insensitive to noise. In addition, frequency-change-ratio based method had been validated to have the ability to identify the damage occurrence and location. However, building a precise enough finite elemental model (FEM) for the test structure is still a huge challenge for this frequency-change-ratio based damage detection technique. In order to overcome this disadvantage and extend the application for frequencies in structural health monitoring area, a novel method was developed in this paper by combining the cross-model cross-mode (CMCM) model updating algorithm with the frequency-change-ratio based method. At first, assuming the physical parameters, including the element mass and stiffness, of the test structure had been known with a certain value, then an initial to-be-updated model with these assumed parameters was constructed according to the typical mass and stiffness distribution characteristic of shear buildings. After that, this to-be-updated model was updated using CMCM algorithm by combining with the measured frequencies of the actual structure when no damage was introduced. Thus, this updated model was regarded as a representation of the FEM model of actual structure, because their modal information were almost the same. Finally, based on this updated model, the frequency-change-ratio based method can be further proceed to realize the damage detection and localization. In order to verify the effectiveness of the developed method, a four-level shear building was numerically simulated and two actual shear structures, including a three-level shear model and an eight-story frame, were experimentally test in laboratory, and all the test results demonstrate that the developed method can identify the structural damage occurrence and location effectively, even only very limited modal frequencies of the test structure were provided.

Development of Modified Creep-Fatigue Damage Model for High Temperature Life Prediction (고온 수명평가를 위한 수정 크립-피로 손상모델의 걔발)

  • Park, Jong-Joo;Seok, Chang-Sung;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3424-3432
    • /
    • 1996
  • For mechanical system operating at high temperature, damage due to the interaction effect of creep and fatigue plays an important role. The objective of this paper is to develop a modified creep-fatigue damage model which separately analyzes the pure creep damage for hold time and the creep-fatigue interaction damage during startup and shutdown period. The creep damage was calculated by the general creep damage equation and the creep-fatigue interaction damage was calculated by the modified equation which is based on the frequency modified strain range method with strain rate term. In order to verify the proposed model, a service of high temperature low cycle fatigue tests were performed. The test specimens were made from inconel-718 superalloy and the test parameters were wave shape and hold time. A good agreement between the predicted lives based on the proposed model and experimentally obtained ones was observed.

Nonlinear damage detection using linear ARMA models with classification algorithms

  • Chen, Liujie;Yu, Ling;Fu, Jiyang;Ng, Ching-Tai
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Majority of the damage in engineering structures is nonlinear. Damage sensitive features (DSFs) extracted by traditional methods from linear time series models cannot effectively handle nonlinearity induced by structural damage. A new DSF is proposed based on vector space cosine similarity (VSCS), which combines K-means cluster analysis and Bayesian discrimination to detect nonlinear structural damage. A reference autoregressive moving average (ARMA) model is built based on measured acceleration data. This study first considers an existing DSF, residual standard deviation (RSD). The DSF is further advanced using the VSCS, and then the advanced VSCS is classified using K-means cluster analysis and Bayes discriminant analysis, respectively. The performance of the proposed approach is then verified using experimental data from a three-story shear building structure, and compared with the results of existing RSD. It is demonstrated that combining the linear ARMA model and the advanced VSCS, with cluster analysis and Bayes discriminant analysis, respectively, is an effective approach for detection of nonlinear damage. This approach improves the reliability and accuracy of the nonlinear damage detection using the linear model and significantly reduces the computational cost. The results indicate that the proposed approach is potential to be a promising damage detection technique.

Energy equivalent lumped damage model for reinforced concrete structures

  • Neto, Renerio Pereira;Teles, Daniel V.C.;Vieira, Camila S.;Amorim, David L.N.F.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.285-293
    • /
    • 2022
  • Lumped damage mechanics (LDM) is a recent nonlinear theory with several applications to civil engineering structures, such as reinforced concrete and steel buildings. LDM apply key concepts of classic fracture and damage mechanics on plastic hinges. Therefore, the lumped damage models are quite successful in reproduce actual structural behaviour using concepts well-known by engineers in practice, such as ultimate moment and first cracking moment of reinforced concrete elements. So far, lumped damage models are based in the strain energy equivalence hypothesis, which is one of the fictitious states where the intact material behaviour depends on a damage variable. However, there are other possibilities, such as the energy equivalence hypothesis. Such possibilities should be explored, in order to pursue unique advantages as well as extend the LDM framework. Therewith, a lumped damage model based on the energy equivalence hypothesis is proposed in this paper. The proposed model was idealised for reinforced concrete structures, where a damage variable accounts for concrete cracking and the plastic rotation represents reinforcement yielding. The obtained results show that the proposed model is quite accurate compared to experimental responses.

Global Behavior Analyses of Rock Mass Structures with Defects Using Damage Tensor (Damage Tensor를 이용한 손상된 암반구조체의 거동해석)

  • 이상호;이형기;허용학;김재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.133-140
    • /
    • 2000
  • The objective of this study is to develop a damage model based on damage mechanics that can be used to analyze the mechanical behavior of structures with defects and the global behavior of damaged structures. A modified second order damage tensor that can be applied to finite element analysis is used to reflect the effect of damage. The damage stress computed from the effective stress is considered as an additional loading term acting on nodes and can represent the effect of crack surface. The accuracy of the proposed algorithm is verified by comparing the analysis results with the experimental data from other studies and the analysis results based on transverse isotropic theory. The developed damage model is applied to the analyses of structures with cracks under linear elastic condition. Numerical results show that the developed model can effectively analyze the global behavior of damaged structures.

  • PDF