• 제목/요약/키워드: Damage Mode

검색결과 792건 처리시간 0.026초

Multi-strategy structural damage detection based on included angle of vectors and sparse regularization

  • Liu, Huanlin;Yu, Ling;Luo, Ziwei;Chen, Zexiang
    • Structural Engineering and Mechanics
    • /
    • 제75권4호
    • /
    • pp.415-424
    • /
    • 2020
  • Recently, many structural damage detection (SDD) methods have been proposed to monitor the safety of structures. As an important modal parameter, mode shape has been widely used in SDD, and the difference of vectors was adopted based on sensitivity analysis and mode shapes in the existing studies. However, amplitudes of mode shapes in different measured points are relative values. Therefore, the difference of mode shapes will be influenced by their amplitudes, and the SDD results may be inaccurate. Focus on this deficiency, a multi-strategy SDD method is proposed based on the included angle of vectors and sparse regularization in this study. Firstly, inspired by modal assurance criterion (MAC), a relationship between mode shapes and changes in damage coefficients is established based on the included angle of vectors. Then, frequencies are introduced for multi-strategy SDD by a weighted coefficient. Meanwhile, sparse regularization is applied to improve the ill-posedness of the SDD problem. As a result, a novel convex optimization problem is proposed for effective SDD. To evaluate the effectiveness of the proposed method, numerical simulations in a planar truss and experimental studies in a six-story aluminum alloy frame in laboratory are conducted. The identified results indicate that the proposed method can effectively reduce the influence of noises, and it has good ability in locating structural damages and quantifying damage degrees.

Wavelet analysis and enhanced damage indicators

  • Lakshmanan, N.;Raghuprasad, B.K.;Muthumani, K.;Gopalakrishnan, N.;Basu, D.
    • Smart Structures and Systems
    • /
    • 제3권1호
    • /
    • pp.23-49
    • /
    • 2007
  • Wavelet transforms are the emerging signal-processing tools for damage identification and time-frequency localization. A small perturbation in a static or dynamic displacement profile could be captured using multi-resolution technique of wavelet analysis. The paper presents the wavelet analysis of damaged linear structural elements using DB4 or BIOR6.8 family of wavelets. Starting with a localized reduction of EI at the mid-span of a simply supported beam, damage modeling is done for a typical steel and reinforced concrete beam element. Rotation and curvature mode shapes are found to be the improved indicators of damage and when these are coupled with wavelet analysis, a clear picture of damage singularity emerges. In the steel beam, the damage is modeled as a rotational spring and for an RC section, moment curvature relationship is used to compute the effective EI. Wavelet analysis is performed for these damage models for displacement, rotation and curvature mode shapes as well as static deformation profiles. It is shown that all the damage indicators like displacement, slope and curvature are magnified under higher modes. A localization scheme with arbitrary location of curvature nodes within a pseudo span is developed for steady state dynamic loads, such that curvature response and damages are maximized and the scheme is numerically tested and proved.

Structural damage identification of truss structures using self-controlled multi-stage particle swarm optimization

  • Das, Subhajit;Dhang, Nirjhar
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.345-368
    • /
    • 2020
  • The present work proposes a self-controlled multi-stage optimization method for damage identification of structures utilizing standard particle swarm optimization (PSO) algorithm. Damage identification problem is formulated as an inverse optimization problem where damage severity in each element of the structure is considered as optimization variables. An efficient objective function is formed using the first few frequencies and mode shapes of the structure. This objective function is minimized by a self-controlled multi-stage strategy to identify and quantify the damage extent of the structural members. In the first stage, standard PSO is utilized to get an initial solution to the problem. Subsequently, the algorithm identifies the most damage-prone elements of the structure using an adaptable threshold value of damage severity. These identified elements are included in the search space of the standard PSO at the next stage. Thus, the algorithm reduces the dimension of the search space and subsequently increases the accuracy of damage prediction with a considerable reduction in computational cost. The efficiency of the proposed method is investigated and compared with available results through three numerical examples considering both with and without noise. The obtained results demonstrate the accuracy of the present method can accurately estimate the location and severity of multi-damage cases in the structural systems with less computational cost.

Multiple damages detection in beam based approximate waveform capacity dimension

  • Yang, Zhibo;Chen, Xuefeng;Tian, Shaohua;He, Zhengjia
    • Structural Engineering and Mechanics
    • /
    • 제41권5호
    • /
    • pp.663-673
    • /
    • 2012
  • A number of mode shape-based structure damage identification methods have been verified by numerical simulations or experiments for on-line structure health monitoring (SHM). However, many of them need a baseline mode shape generated by the healthy structure serving as a reference to identify damages. Otherwise these methods can hardly perform well when multiple cracks conditions occur. So it is important to solve the problems above. By aid of the fractal dimension method (FD), Qiao and Wang proposed a generalized fractal dimension (GFD) to detect the delamination damage. As a modification of GFD, Qiao and Cao proposed the approximate waveform capacity dimension (AWCD) technique to simplify the calculation of fractal and overcome the false peak appearing in the high mode shapes. Based on their valued work, this paper combined and applied the AWCD method and curvature mode shape data to detect multiple damages in beam. In the end, the identification properties of the AWCD for multiple damages have been verified by groups of Monte Carlo simulations and experiments.

건전성 평가를 위한 대형 트러스 구조물의 모드분석 (Modal Analysis of a Large Truss for Structural Integrity)

  • 박수용
    • 한국항해항만학회지
    • /
    • 제32권3호
    • /
    • pp.215-221
    • /
    • 2008
  • 구조물의 대표적 동적특성인 고유진동수 및 모드형상은 손상평가, 구조계추정기법 등과 결합한 구조건전성 평가분야에서 매우 중요한 기초 자료로 활용되고 있다. 그러나 해양구조물이나 대경간 교량과 같은 대형 구조물의 경우 진동원을 정확히 계측하기 힘들기 때문에 소규모의 구조물에 많이 쓰이는 기존의 모달 테스트 기법으로는 구조물의 진동특성을 구할 수 없다. 본 논문에서는 경간이 긴 대형 트러스 구조물을 대상으로 가속도 응답만으로 고유진동수 및 모드형상을 추출할 수 있는 방법을 연구하였다. 트러스 구조물의 수치해석 모델을 이용하여 가속도 응답 및 주파수 응답함수의 생성과정, 모드분석을 통한 고유진동수 및 모드형상 추출과정을 상세히 설명하였다. 제안한 방법으로 얻은 모드형상은 고유치 해석으로부터 계산된 모드형상과 비교하여 정확성을 검증하였으며, 모의 손상을 통한 손상평가기법에 적용하여 타당성을 입증하였다.

An improved modal strain energy method for structural damage detection, 2D simulation

  • Moradipour, Parviz;Chan, Tommy H.T.;Gallag, Chaminda
    • Structural Engineering and Mechanics
    • /
    • 제54권1호
    • /
    • pp.105-119
    • /
    • 2015
  • Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.

모드특성을 이용한 풍력발전기 타워의 손상추정기법 (Damage Estimation Method for Wind Turbine Tower Using Modal Properties)

  • 이종원;방제성;김상렬;한정우
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권2호
    • /
    • pp.87-94
    • /
    • 2012
  • 본 연구에서는 풍력발전기 타워의 효과적인 상태 모니터링을 위하여 타워의 고유진동수 및 모드형상을 이용한 손상추정기법을 제안하였다. 풍력발전기에 대한 동력학 시뮬레이션 프로그램을 이용하여 타워의 거동을 시뮬레이션하고 결과를 이용하여 타워의 모드특성을 추정하였다. 다양한 손상에 의한 타워의 고유진동수와 모드형상의 변화를 모드특성 추정 프로그램을 이용하여 해석적으로 구하여 훈련패턴을 생성하고 이를 이용하여 신경망을 훈련시켰다. 복수 손상 경우를 포함한 10가지 손상경우에 대한 모드특성을 훈련된 신경망에 입력하여 손상을 추정하였으며, 모든 손상 경우에 대하여 비교적 정확하게 손상위치와 손상정도를 판정할 수 있었다. 단, 미소 손상의 경우 손상정도가 약간 과소평가되는 경향을 보였으나 손상위치는 합리적으로 추정됨을 알 수 있었다. 향후, 미소 손상 추정결과의 정확성을 개선하고, 실험을 통하여 제안된 기법을 검증할 계획이다.

Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm

  • Shyamala, Prashanth;Mondal, Subhajit;Chakraborty, Sushanta
    • Structural Monitoring and Maintenance
    • /
    • 제5권2호
    • /
    • pp.243-260
    • /
    • 2018
  • Detection of damages in fibre reinforced plastic (FRP) composite structures is important from the safety and serviceability point of view. Usually, damage is realized as a local reduction of stiffness and if dynamic responses of the structure are sensitive enough to such changes in stiffness, then a well posed inverse problem can provide an efficient solution to the damage detection problem. Usually, such inverse problems are solved within the framework of pattern recognition. Support Vector Machine (SVM) Algorithm is one such methodology, which minimizes the weighted differences between the experimentally observed dynamic responses and those computed using the finite element model- by optimizing appropriately chosen parameters, such as stiffness. A damage detection strategy is hereby proposed using SVM which perform stepwise by first locating and then determining the severity of the damage. The SVM algorithm uses simulations of only a limited number of damage scenarios and trains the algorithm in such a way so as to detect damages at unknown locations by recognizing the pattern of changes in dynamic responses. A rectangular fiber reinforced plastic composite plate has been investigated both numerically and experimentally to observe the efficiency of the SVM algorithm for damage detection. Experimentally determined modal responses, such as natural frequencies and mode shapes are used as observable parameters. The results are encouraging since a high percentage of damage cases have been successfully determined using the proposed algorithm.

Damage detection of multi-storeyed shear structure using sparse and noisy modal data

  • Panigrahi, S.K.;Chakraverty, S.;Bhattacharyya, S.K.
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1215-1232
    • /
    • 2015
  • In the present paper, a method for identifying damage in a multi storeyed shear building structure is presented using minimum number of modal parameters of the structure. A damage at any level of the structure may lead to a major failure if the damage is not attended at appropriate time. Hence an early detection of damage is essential. The proposed identification methodology requires experimentally determined sparse modal data of any particular mode as input to detect the location and extent of damage in the structure. Here, the first natural frequency and corresponding partial mode shape values are used as input to the model and results are compared by changing the sensor placement locations at different floors to conclude the best location of sensors for accurate damage identification. Initially experimental data are simulated numerically by solving eigen value problem of the damaged structure with inclusion of random noise on the vibration characteristics. Reliability of the procedure has been demonstrated through a few examples of multi storeyed shear structure with different damage scenarios and various noise levels. Validation of the methodology has also been done using dynamic data obtained through experiment conducted on a laboratory scale steel structure.

Damage detection for truss or frame structures using an axial strain flexibility

  • Yan, Guirong;Duan, Zhongdong;Ou, Jinping
    • Smart Structures and Systems
    • /
    • 제5권3호
    • /
    • pp.291-316
    • /
    • 2009
  • Damage detection using structural classical deflection flexibility has received considerable attention due to the unique features of the flexibility in the last two decades. However, for relatively complex structures, most methods based on classical deflection flexibility fail to locate damage sites to the exact members. In this study, for structures whose members are dominated by axial forces, such as truss structures, a more feasible flexibility for damage detection is proposed, which is called the Axial Strain (AS) flexibility. It is synthesized from measured modal frequencies and axial strain mode shapes which are expressed in terms of translational mode shapes. A damage indicator based on AS flexibility is proposed. In addition, how to integrate the AS flexibility into the Damage Location Vector (DLV) approach (Bernal and Gunes 2004) to improve its performance of damage localization is presented. The methods based on AS flexbility localize multiple damages to the exact members and they are suitable for the cases where the baseline data of the intact structure is not available. The proposed methods are demonstrated by numerical simulations of a 14-bay planar truss and a five-story steel frame and experiments on a five-story steel frame.