• 제목/요약/키워드: Damage Method

검색결과 5,920건 처리시간 0.036초

Optimized finite element model updating method for damage detection using limited sensor information

  • Cheng, L.;Xie, H.C.;Spencer, B.F. Jr.;Giles, R.K.
    • Smart Structures and Systems
    • /
    • 제5권6호
    • /
    • pp.681-697
    • /
    • 2009
  • Limited, noisy data in vibration testing is a hindrance to the development of structural damage detection. This paper presents a method for optimizing sensor placement and performing damage detection using finite element model updating. Sensitivity analysis of the modal flexibility matrix determines the optimal sensor locations for collecting information on structural damage. The optimal sensor locations require the instrumentation of only a limited number of degrees of freedom. Using noisy modal data from only these limited sensor locations, a method based on model updating and changes in the flexibility matrix successfully determines the location and severity of the imposed damage in numerical simulations. In addition, a steel cantilever beam experiment performed in the laboratory that considered the effects of model error and noise tested the validity of the method. The results show that the proposed approach effectively and robustly detects structural damage using limited, optimal sensor information.

Condition assessment of stay cables through enhanced time series classification using a deep learning approach

  • Zhang, Zhiming;Yan, Jin;Li, Liangding;Pan, Hong;Dong, Chuanzhi
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.105-116
    • /
    • 2022
  • Stay cables play an essential role in cable-stayed bridges. Severe vibrations and/or harsh environment may result in cable failures. Therefore, an efficient structural health monitoring (SHM) solution for cable damage detection is necessary. This study proposes a data-driven method for immediately detecting cable damage from measured cable forces by recognizing pattern transition from the intact condition when damage occurs. In the proposed method, pattern recognition for cable damage detection is realized by time series classification (TSC) using a deep learning (DL) model, namely, the long short term memory fully convolutional network (LSTM-FCN). First, a TSC classifier is trained and validated using the cable forces (or cable force ratios) collected from intact stay cables, setting the segmented data series as input and the cable (or cable pair) ID as class labels. Subsequently, the classifier is tested using the data collected under possible damaged conditions. Finally, the cable or cable pair corresponding to the least classification accuracy is recommended as the most probable damaged cable or cable pair. A case study using measured cable forces from an in-service cable-stayed bridge shows that the cable with damage can be correctly identified using the proposed DL-TSC method. Compared with existing cable damage detection methods in the literature, the DL-TSC method requires minor data preprocessing and feature engineering and thus enables fast and convenient early detection in real applications.

Quantification and location damage detection of plane and space truss using residual force method and teaching-learning based optimization algorithm

  • Shallan, Osman;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • 제81권2호
    • /
    • pp.195-203
    • /
    • 2022
  • This paper presents the quantification and location damage detection of plane and space truss structures in a two-phase method to reduce the computations efforts significantly. In the first phase, a proposed damage indicator based on the residual force vector concept is used to get the suspected damaged members. In the second phase, using damage quantification as a variable, a teaching-learning based optimization algorithm (TLBO) is used to obtain the damage quantification value of the suspected members obtained in the first phase. TLBO is a relatively modern algorithm that has proved distinguished in solving optimization problems. For more verification of TLBO effeciency, the classical particle swarm optimization (PSO) is used in the second phase to make a comparison between TLBO and PSO algorithms. As it is clear, the first phase reduces the search space in the second phase, leading to considerable reduction in computations efforts. The method is applied on three examples, including plane and space trusses. Results have proved the capability of the proposed method to precisely detect the quantification and location of damage easily with low computational efforts, and the efficiency of TLBO in comparison to the classical PSO.

Structural Damage Monitoring of Harbor Caissons with Interlocking Condition

  • Huynh, Thanh-Canh;Lee, So-Young;Nguyen, Khac-Duy;Kim, Jeong-Tae
    • 비파괴검사학회지
    • /
    • 제32권6호
    • /
    • pp.678-685
    • /
    • 2012
  • The objective of this study is to monitor the health status of harbor caissons which have potential foundation damage. To obtain the objective, the following approaches are performed. Firstly, a structural damage monitoring(SDM) method is designed for interlocked multiple-caisson structures. The SDM method utilizes the change in modal strain energy to monitor the foundation damage in a target caisson unit. Secondly, a finite element model of a caisson system which consists of three caisson units is established to verify the feasibility of the proposed method. In the finite element simulation, the caisson units are constrained each other by shear-key connections. The health status of the caisson system against various levels of foundation damage is monitored by measuring relative modal displacements between the adjacent caissons.

Damage detection and localization on a benchmark cable-stayed bridge

  • Domaneschi, Marco;Limongelli, Maria Pina;Martinelli, Luca
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.1113-1126
    • /
    • 2015
  • A damage localization algorithm based on Operational Deformed Shapes and known as Interpolation Damage Detection Method, is herein applied to the finite element model of a cable stayed bridge for detecting and localizing damages in the stays and the supporting steel beams under the bridge deck. Frequency Response Functions have been calculated basing on the responses of the bridge model to low intensity seismic excitations and used to recover the Operational Deformed Shapes both in the transversal and in the vertical direction. The analyses have been carried in the undamaged configuration and repeated in several different damaged configurations. Results show that the method is able to detect the damage and its correct location, provided an accurate estimation of the Operational Deformed Shapes is available. Furthermore, the damage detection algorithm results effective also when damages coexist at the same time at several location of the cable-stayed bridge members.

Damage identification in beam-like pipeline based on modal information

  • Yang, Zhi-Rong;Li, Hong-Sheng;Guo, Xing-Lin;Li, Hong-Yan
    • Structural Engineering and Mechanics
    • /
    • 제26권2호
    • /
    • pp.179-190
    • /
    • 2007
  • Damage detection based on measured vibration data has received intensive studies recently. Frequently, the damage to a structure may be reflected by a change of some system parameters, such as a degradation of the stiffness. In this paper, we apply a method to nondestructively locate and estimate the severity of damage in corrosion pipeline for which a few natural frequencies or mode shapes are available. The method is based on the strain modal sensitivity ratio (SMSR) and the orthogonality conditions sensitivities (OCS) applied to vibration features identified during the monitoring of the pipeline. The advantage of these methods is that it only requires measuring few modal parameters. The SMSR-based and OCS-based damage detection methods are illustrated using computer-simulated and laboratory testing data. The results show that the current method provides a precise indication of both the location and the extent of corrosion pipeline.

다구찌 방법을 사용한 구조물의 손상 평가 (Damage Assessment of Structures Using Taguchi Method)

  • 권계시
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.720-728
    • /
    • 2006
  • A robust damage assessment technique is presented such that the location and severity of damage in structures can be identified using measured modal data. In order to identify the damage efficiently, the concept of design of experiment using orthogonal array is used for screening the main effects of each parameter which corresponds to possible damage location in FE model. Then, Taguchi method, which has been widely used for robust design in industry, is applied to parameter updating in analytical FE model. The numerical simulations of a truss structure show that damages in structure can be located from updated parameters.

스펙트럴요소 모델을 이용한 구조손상규명 (Structural Damage Identification by Using Spectral Element Model)

  • 민승규;김정수;이우식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.366-373
    • /
    • 2003
  • This paper introduces a frequency-domain method of structural damage identification. It is formulated in a general form to include the nonlinearity of damage magnitudes from the dynamic stiffness equation of motion for a beam structure. The appealing features of the present damage identification method are: (1) it requires only the frequency response functions measured from damaged structure as the input data, and (2) it can locate and quantify many local damages at the same time. The feasibility of the present damage identification method is tested through some numerically simulated damage identification analyses for a cantilevered beam with three piece-wise uniform damages.

  • PDF

이동하중응답을 이용한 손상인식기법의 실험적 검증 (Experimental Verification of Damage Identification Method using Moving load Response)

  • 최상현;김대혁
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.552-559
    • /
    • 2009
  • Most damage identification methods for structural health monitoring developed to date utilize modal domain responses which require postprocessing and inevitably contain errors in transforming the domain of responses. In this paper, the feasibility of a damage identification method based on dynamics responses from moving loads is experimentally verified. The experiment is performed via applying periodic and non-periodic moving loads to a steel beam and acceleration and displacement responses of the beam is measured. The moving loads is applied using steel balls and the damage of a structure is simulated by saw-cutting the beam. The damage identification results using the measured responses show that the moving load response based damage identification method successfully identify all damages in the beam.

  • PDF

Lamb파의 시간-반전과정 및 이미지기법을 이용한 손상탐지 (Structural Damage Detection by Using the Time-Reversal Process of Lamb Waves and the Imaging Method)

  • 전용주;이우식
    • 한국철도학회논문집
    • /
    • 제14권4호
    • /
    • pp.320-326
    • /
    • 2011
  • 본 연구에서는 Lamb파에 대한 시간-반전과정과 이미지기법을 기반으로 하여 기준 데이터를 사용하지 않는 구조물 건전성 모니터링(SHM) 기술을 제안하였다. 제안된 기술이 갖는 주요 세가지 특징은 다음과 같다: (1) 제안된 기술에서는 귀환신호를 직접 손상진단에 사용하기 때문에 귀환신호와 초기 입력신호의 차이로부터 손상신호를 구할 필요가 없다; (2) 기존의 기술에서 널리 사용되는 형상비교법을 사용하지 않고 귀환신호에서 얻는 비시간 정보를 활용하는 이미지기법을 사용하였다; (3) 손상 이미지를 보다 뚜렷하게 얻기 위하여 이미지에 대한 개선된 수학적 정의를 사용하였다. 본 연구에서 제안한 SHM기술은 손상을 평판의 몇몇 위치에 부가한 경우에 대한 손상탐지 실험을 수행함으로써 검증하였다.