• Title/Summary/Keyword: Damage Measurement

Search Result 1,064, Processing Time 0.024 seconds

Simultaneous Measurement of Strain and Damage Signal in Composite Structures Using a Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 변형률 및 파손신호 동시 측정)

  • Koh, Jong-In;Bang, Hyung-Joon;Kim, Chun-Gon;Hong, Chang-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.43-50
    • /
    • 2004
  • For the simultaneous measurement of strain and damage signal a fiber Bragg grating sensor system with a dual demodulator was proposed. The dual demodulator is composed of a demodulator using a tunable Fabry-Perot filter measuring the low-frequency signal with large magnitude such as strain and the other using a passive Mach-Zehnder interferometer detecting the high-frequency signal with small amplitude such as impact or damage signal. Using the proposed fiber Bragg grating sensor system, both the strain and damage signals of a cross-ply laminated composite beam under tensile loading were simultaneously measured. The strain and damage signals detected by single fiber Bragg grating sensor showed that sudden strain shifts were accompanied with vibration at a maximum frequency of several hundreds of kilohertz at the instant of matrix crack propagation in the 90 degree layer in composite beam.

Simultaneous Measurement of Strain and Damage Signal of Composite Structures Using a Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 변형률 및 파손신호 동시 측정)

  • Koh Jong-In;Bang Hyung-Joon;Kim Chun-Gon;Hong Chang-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.95-102
    • /
    • 2004
  • For the simultaneous measurement of strain and damage signal, a fiber Bragg grating sensor system with a dual demodulator was proposed. One demodulator using a tunable Fabry-Perot filter can measure low-frequency signal such as strain and the other demodulator using a passive Mach-Zehnder interferometer can detect high-frequency signal such as damage signal or impact signal. Using a proposed fiber Bragg grating sensor system, both the strain and damage signal of a cross-ply laminated composite beam under tensile loading were simultaneously measured. Analysis of the strain and damage signals detected by single fiber Bragg grating sensor showed that sudden strain shifts were induced due to transverse crack propagation in the 90 degree layer of composite beam and vibration with a maximum frequency of several hundreds of kilohertz was generated.

  • PDF

Creep Damage Evaluation of High-Temperature Pipeline in Power Plant by Using Ultrasonic Velocity Measurement and Hardness Test (초음파 음속 및 경도법에 의한 발전소 고온배관재의 크리프 손상평가)

  • Hur, Kwang-Beom;Yoo, Keun-Bong;Cho, Yong-Sang;Lee, Sang-Guk
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.92-99
    • /
    • 1999
  • High temperature and pressure materials in power plant are degraded by creep damage, if they are exposed to constant loads for long times, which occurs in load bearing structures of pressurized components operationg at elevated temperatures. Many conventional measurement techniques such as replica method, electric resistance method, and hardness test method for measuring creep damgage have been used. So far, the replica method is mainly used for the inspection of high temperature and pressure components. This technique is, however, restricted to applications at the surface of the testpieces and cannot be used to material inside. In this paper, ultrasonic evaluation for the detection of creep damage in the form of cavaties on grain boundaries or intergranular microcracks were carried out. And the absolute measuring method of quantitative ultrasonic velocity technique for Cr-Mo material degradation was analyzed. As a result of ultrasonic tests for crept for specimens, we founded that the sound velocity was decreased as increase of creep life fraction(${phi}c$) and also, confirmed that hardness was decreased as increase of creep life fraction(${phi}c$).

  • PDF

The Changes in Intestinal Damage and Bacterial Translocation with Time after Administration of Diclofenac (Diclofenac 투여 후 시간경과에 따른 장손상과 장내세균전위의 변화)

  • Kim, Eun-Jeong;Kim, Jeong-Wook
    • YAKHAK HOEJI
    • /
    • v.52 no.4
    • /
    • pp.293-298
    • /
    • 2008
  • Non-steroidal anti-inflammatory drug (NSAID)-induced gut damage and bacterial translocation (BT) have not been studies well, especially from the perspective of time after administration of NSAIDs. We therefore examined these changes in animals. The study was performed on 5 groups of rat; a control group (group A) and diclofenac groups (groups B, C, E, and F). Rats in the diclofenac groups were orally administered diclofenac sodium before intestinal permeability (IP) measurement (group B, 1 h before measurement; group C, 10 h before; group D, 22 h before; and group E, 52 h before). The IP, stool pellet number, serum biochemical profile, enteric bacterial number, and BT in the mesenteric lymph nodes (MLNs), liver, spleen, kidney and heart were measured. The administration of diclofenac resulted in significantly increased IP, caused intestinal protein loss, decreased stool pellet number, caused enteric bacterial overgrowth and increased BT in multiple organs in groups A, B, C, and D. IF, intestinal protein loss, and the BT in the liver and the spleen in group E were decreased than those in group D. There were no differences in the other parameters between group D and E. In the recovery phase of the diclofenac-induced gut damage, enteric bacterial overgrowth and BT in the kidneys and the heart did not change while the BT in the reticuloendothelial systems such as in the MLNs and liver was decreased.

Evaluation of Mechanical Property and Fatigue Damage in A Practical Superconducting Cable for Magnet (초전도 마그네트용 실용 초전도 복합선재의 기계적 특성 및 피로손상 평가에 관한 연구)

  • Sin, Hyeong-Seop;O, Sang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.761-768
    • /
    • 2000
  • In order to investigate how the fatigue damage effects on the critical properties of superconductor, a fatigue test at room temperature and an Ic measurement test at 4.2K were carried out in this study, respectively, using a 9 strand Cu-Ni/NbTi/Cu composite cable. Through the fatigue test of a 9 strand Cu-NUNbTi/Cu composite cable, a conventional S-N curve was plotted even though there was a possibility of fretting among strands. It was found that the maximum stress corresponding to the inflection point on the S-N curve obtained was nearly the same value as the yielding strength of cable obtained from the static tensile test. However, the effect of cabling in multi-strands superconducting cable on the fatigue strength was not noticeable. The critical current(Ic) measurement was carried out at 4.2K in a NbTi strand out of the fatigued cable. It showed a degradation of lc at high stress amplitude regions over 380NTa, and the degradation became significant as the applied stress amplitude increased.

The Wireless Radiation Measurement Using Embedded System (임베디드 시스템에 의한 방사선의 무선계측)

  • Kim, Hyong-Jong;Park, Dae-Sung;Lee, Sang-Bock
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • Radiation is used in various field, including medical science, engineering science, agricultural science and other industrial fields and the use frequency of radiation is increasing thanks to the development of radiation technology. Although radiation contributes to the mankind so much, we must pay attention to radiation damage by its influence on human body. To use radiation properly and prevent the radiation damage, it is necessary to measure radiation exactly and to practice thorough research and education on the basis of this measurement. In this study, I suggest the method to measure radiation wirelessly without the limit of time and space, not approaching radiation having a harmful effect on human body by using ubiquitous computing technology. For the realization of suggested method, the wireless transmission technology of CDMA network is used and after installing embedded system in PDA, the measurement value is displayed through accessing CDMA network with PDA in radiation measurement system of having fixed IP. If we use the proposed method of this study, we don't have to approach radiation that is harmful to the human and can read the measurement value that is marked in PDA through CDMA network by radiation measurement system of having fixed IP.

  • PDF

A Study on Damage Detection of Fasteners Using Self-sensing of CFRP (CFRP의 자가 센싱을 이용한 패스너 손상 감지 연구)

  • Min Jong Lee;Donghyeon Lee;Yongseok Lee;Ki-Eek Kwon;Zuo-Jia Wang;Woo-Seok Shim;Mantae Kim;Dong-Jun Kwon
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.343-349
    • /
    • 2024
  • The use of composite materials for structural fasteners is increasingly common, making it crucial to assess the deformation of these fasteners under fatigue behavior. In this study, clamp-type fasteners were manufactured using carbon fiber reinforced composites, and their structural stability and sectional damage rates were evaluated using electrical resistance measurement during fatigue behavior. While clamp-type composite fasteners exhibited minimal deformation in flat sections, significant deformation occurred in the bent sections due to fatigue. It was observed that insufficient angular stability led to concentrated damage in the bent sections. The dynamic fatigue behavior showed that the length change rate of the composite fasteners was within 0.6%, but the angular change rate reached up to 6%, indicating that the bent sections are the most critical areas. By utilizing the self-sensing capability of the composite fasteners, sectional damage behavior was assessed through electrical resistance measurement. Significant damage was noted in the bent sections due to fatigue, and 3D-CT results revealed substantial deformation and interfacial damage when the initial bend angle of the fasteners was less than 90 degrees. These findings highlight the importance of reinforcing the stiffness of the bent sections and establishing systematic angular standards in the development of composite fasteners.

Method and Application for Reliability Analysis of Measurement Data in Nuclear Power Plant (원전 배관의 두께 측정 데이터에 대한 신뢰도 분석 방법 및 적용)

  • Yun, Hun;Hwang, Kyeongmo;Lee, Hyoseoung;Moon, Seungjae
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • Pipe wall-thinning by flow-accelerated corrosion and various types of erosion is significant damage in secondary system piping of nuclear power plants(NPPs). All NPPs in Korea have management programs to ensure pipe integrity from degradation mechanisms. Ultrasonic test(UT) is widely used for pipe wall thickness measurement. Numerous UT measurements have been performed during scheduled outages. Wall-thinning rates are determined conservatively according to several evaluation methods developed by Electric Power Research Institute(EPRI). The issue of reliability caused by measurement error should be considered in the process of evaluation. The reliability analysis method was developed for single and multiple measurement data in the previous researches. This paper describes the application results of reliability analysis method to real measurement data during scheduled outage and proved its benefits.

A Study on the Development of Catenary stagger and height Measurement System (전차선 편위 및 높이 측정 시스템 개발에 관한 연구)

  • Song, Sung-Gun;Park, Seong-Mo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.299-304
    • /
    • 2008
  • Catenary and Pantograph are a power supply devices for electric trains and shall be steadily contacted. Rail catenary must be installed precisely and managed for stable train operations. But external factors such as weathers, nature, etc., or aging affect catenary geometry. Changed catenary height causes high voltage spark or instant electric disconnection. Big spark and disconnection damage pantograph shoe and catenary coating and might interrupt rail operations. To prevent a big scale spark or electric disconnection catenary maintenance shall be required with catenary geometry measurement systems. In this paper, we describe the development of catenary height and stagger measurement system. The catenary height and stagger measurement system uses Acuity company's AR4000 Range Finder for distance measurement and AccuRange Line Scanner for degree measurement. This system reports suspicious overhead line sections with excessive height and stagger variance.

  • PDF

Development of Pressure Control System of Contact Transducer for Measurement of Ultrasonic Nonlinear Parameter

  • Lee, In-Ho;Son, Dae-Soo;Choi, Ik-Hwang;Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.576-581
    • /
    • 2007
  • Ultrasonic nonlinearity has been considered as a promising method to evaluate the micro damage of material; however, its magnitude is so small that its measurement is not easy. Especially, when we use contact PZT transducer, if the contacting pressure is not kept in constant during the measurement then there exists extraneous fluctuation in the measured nonlinearity caused by the unstable contact condition, In this paper, we developed a pneumatic control system to keep the contacting pressure of transducer in constant during the measurement and analyzed the effect of contacting pressure to the ultrasonic nonlinearity measurement As a result, we found that the pressure of transducer in our measurement system should be greater than 170 kPa to measure the ultrasonic nonlinear parameter in stable with no dependency on the contacting pressure.