• Title/Summary/Keyword: Damage Matrix

Search Result 591, Processing Time 0.029 seconds

Assessment of seismic damage inspection and empirical vulnerability probability matrices for masonry structure

  • Li, Si-Qi;Chen, Yong-Sheng;Liu, Hong-Bo;Du, Ke;Chi, Bo
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.387-399
    • /
    • 2022
  • To study the seismic damage of masonry structures and understand the characteristics of the multi-intensity region, according to the Dujiang weir urbanization of China Wenchuan earthquake, the deterioration of 3991 masonry structures was summarized and statistically analysed. First, the seismic damage of multistory masonry structures in this area was investigated. The primary seismic damage of components was as follows: Damage of walls, openings, joints of longitudinal and transverse walls, windows (lower) walls, and tie columns. Many masonry structures with seismic designs were basically intact. Second, according to the main factors of construction, seismic intensity code levels survey, and influence on the seismic capacity, a vulnerability matrix calculation model was proposed to establish a vulnerability prediction matrix, and a comparative analysis was made based on the empirical seismic damage investigation matrix. The vulnerability prediction matrix was established using the proposed vulnerability matrix calculation model. The fitting relationship between the vulnerability prediction matrix and the actual seismic damage investigation matrix was compared and analysed. The relationship curves of the mean damage index for macrointensity and ground motion parameters were drawn through calculation and analysis, respectively. The numerical analysis was performed based on actual ground motion observation records, and fitting models of PGA, PGV, and MSDI were proposed.

An efficient method for structural damage localization based on the concepts of flexibility matrix and strain energy of a structure

  • Nobahari, Mehdi;Seyedpoor, Seyed Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.231-244
    • /
    • 2013
  • An efficient method is proposed here to identify multiple damage cases in structural systems using the concepts of flexibility matrix and strain energy of a structure. The flexibility matrix of the structure is accurately estimated from the first few mode shapes and natural frequencies. Then, the change of strain energy of a structural element, due to damage, evaluated by the columnar coefficients of the flexibility matrix is used to construct a damage indicator. This new indicator is named here as flexibility strain energy based index (FSEBI). In order to assess the performance of the proposed method for structural damage detection, two benchmark structures having a number of damage scenarios are considered. Numerical results demonstrate that the method can accurately locate the structural damage induced. It is also revealed that the magnitudes of the FSEBI depend on the damage severity.

Damage assessment in periodic structures from measured natural frequencies by a sensitivity and transfer matrix-based method

  • Zhu, Hongping;Li, Lin;Wang, Dansheng
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.17-34
    • /
    • 2003
  • This paper presents a damage assessment procedure applied to periodic spring mass systems using an eigenvalue sensitivity-based method. The damage is directly related to the stiffness reduction of the damage element. The natural frequencies of periodic structures with one single disorder are found by adopting the transfer matrix approach, consequently, the first order approximation of the natural frequencies with respect to the disordered stiffness in different elements is used to form the sensitivity matrix. The analysis shows that the sensitivity of natural frequencies to damage in different locations depends only on the mode number and the location of damage. The stiffness changes due to damage can be identified by solving a set of underdetermined equations based on the sensitivity matrix. The issues associated with many possible damage locations in large structural systems are addressed, and a means of improving the computational efficiency of damage detection while maintaining the accuracy for large periodic structures with limited available measured natural frequencies, is also introduced in this paper. The incomplete measurements and the effect of random error in terms of measurement noise in the natural frequencies are considered. Numerical results of a periodic spring-mass system of 20 degrees of freedom illustrate that the proposed method is simple and robust in locating single or multiple damages in a large periodic structure with a high computational efficiency.

Damage Characteristics of Quasi Isotropic Composite Laminates Subjected to Low Velocity Impact (준등방성 복합적층판의 저속충격에 의한 손상특성)

  • Kim, J.H.;Jeon, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.135-141
    • /
    • 1997
  • Low velocity impact test and compressive residual strength test after impact were performed by using Hercules AS4/3501-6[45/0/-45/90]$_{2s}$ laminated plate to investigate the low velocity impact damage behavior and the post-impact strength degradation on orthotropic composite laminate plate. Due to the lateral impact losd, the load path showed "" shape according to the laminate central deflection. Damage in a laminate occurs by inclined matrix crack at the damage initiation load stage and vertical matrix crack, occurs on the outer surface. Evaluating the compressive residual strength after the low velocty impact test, it could be found that there is a transient range where the compressive residual strength drop suddenly in the initial damage which is in the matrix crack range and the initial delamination area. is in the matrix crack range and the initial delamination area.

  • PDF

Evaluation of Thermal Shock Damage of Metal Matrix Composite Using Ultasonics (초음파를 이용한 금속기지 복합재료의 열충격 손상 평가)

  • Kang, Moon-Phil;Lee, Min-Rae;Lee, Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1480-1487
    • /
    • 2005
  • Metal matrix composites(MMCs) have been rapidly becoming one of the strongest candidates for structural materials fur many high temperature application. However, among the various high temperature environments in which metal matrix composites was applied, thermal shock is known to cause significant degradation in most MMC system. Due to the appreciable difference in coefficient of thermal expansion(CTE) between reinforcement and metal matrix, internal stresses are generated following temperature changes. Infernal stresses affect degradation of mechanical properties of MMC by causing microscopic damage in interface and matrix during thermal cycling. Therefore, the nondestructive evaluation on thermal shock damage behavior of SiC/A16061 composite has been carried out using ultrasonics. For this study, SiC fiber reinforced metal matrix composite specimens fabricated by a squeeze casting technique were thermally cycled in the temperature range 298$\~$673 K up to 1000cyc1es. Three point bending test was conducted to investigate the efffct of thermal shock damage on mechanical properties. The relationship between thermal shock damage behavior and the propagation characteristics of surface wave and SH-ultrasonic wave was discussed by considering the result of SEM observation of fracture surface.

Analysis of a Structural Damage Detection Using Sensitivity Analysis (감도해석을 이용한 구조물의 손상위치 및 크기해석)

  • 이정윤
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.50-55
    • /
    • 2003
  • This study proposed the analysis of damage detection due to the change of the stiffness of structure by using the original and modified dynamic characteristics. The present approach allows the use of composite data which consist of eigenvalues and eigenvectors. The suggested method is applied to examples of a cantilever and 3 degree of freedom system by modifying the stiffness. The predicted damage detections are in good agreement with these from the structural reanalysis using the modified stiffness.

Analysis of a Structural Damage Detection using the Change of Dynamic Characteristics (동특성 변화를 이용한 구조물의 손상 탐지 해석)

  • 이정윤;이정우;이준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.760-763
    • /
    • 2003
  • This study proposed the analysis of damage defection due to the change of the stiffness of structure by using the original and modified dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom by modifying the stiffness. The predicted damage detections are in good agreement with these from the structural reanalysis using the modified stiffness.

  • PDF

Prediction of the Damage in the Structure with Damping Using the Modified Dynamic Characteristics (동특성 변화를 이용한 감쇠 구조물의 손상예측)

  • Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1144-1151
    • /
    • 2012
  • A damage in structure alters its dynamic characteristics. The change is characterized by changes in the modal parameter, i.e., modal frequencies, modal damping value and mode shape associated with each modal frequency. Changes also occur in some of the structural parameters; namely, the mass, damping, stiffness matrices of the structure. In this paper, evaluation of changes in stiffness matrix of a structure is presented as a method not only for identifying the presence of the damage but also locating the damage. It is shown that changed stiffness matrix can be accurately estimated a sensitivity coefficient matrix derived from modifying mode shapes, First, with 4 story shear structure models, the effect of presence of damage in a structure on its stiffness matrix is studied. By using these analytical model, the effectiveness of using change of stiffness matrix in detecting and locating damages is demonstrated. To validate the predicted changing stiffness and its location, the obtained results are compared to the reanalysis result which shows good agreement.

Seismic damage vulnerability of empirical composite material structure of adobe and timber

  • Si-Qi Li
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.429-442
    • /
    • 2023
  • To study the seismic vulnerability of the composite material structure of adobe and timber, we collected and statistically analysed empirical observation samples of 542,214,937 m2 and 467,177 buildings that were significantly impacted during the 179 earthquakes that occurred in mainland China from 1976 to 2010. In multi-intensity regions, combined with numerical analysis and a probability model, a non-linear continuous regression model of the vulnerability, considering the empirical seismic damage area (number of buildings) and the ratio of seismic damage, was established. Moreover, a probability matrix model of the empirical seismic damage mean value was provided. Considering the coupling effect of the annual and seismic fortification factors, an empirical seismic vulnerability curve model was constructed in the multiple-intensity regions. A probability matrix model of the mean vulnerability index (MVI) was proposed, and was validated through the above-mentioned reconnaissance sample data. A matrix model of the MVI of the regions (19 provinces in mainland China) based on the parameter (MVI) was established.

Empirical seismic fragility rapid prediction probability model of regional group reinforced concrete girder bridges

  • Li, Si-Qi;Chen, Yong-Sheng;Liu, Hong-Bo;Du, Ke
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.609-623
    • /
    • 2022
  • To study the empirical seismic fragility of a reinforced concrete girder bridge, based on the theory of numerical analysis and probability modelling, a regression fragility method of a rapid fragility prediction model (Gaussian first-order regression probability model) considering empirical seismic damage is proposed. A total of 1,069 reinforced concrete girder bridges of 22 highways were used to verify the model, and the vulnerability function, plane, surface and curve model of reinforced concrete girder bridges (simple supported girder bridges and continuous girder bridges) considering the number of samples in multiple intensity regions were established. The new empirical seismic damage probability matrix and curve models of observation frequency and damage exceeding probability are developed in multiple intensity regions. A comparative vulnerability analysis between simple supported girder bridges and continuous girder bridges is provided. Depending on the theory of the regional mean seismic damage index matrix model, the empirical seismic damage prediction probability matrix is embedded in the multidimensional mean seismic damage index matrix model, and the regional rapid prediction matrix and curve of reinforced concrete girder bridges, simple supported girder bridges and continuous girder bridges in multiple intensity regions based on mean seismic damage index parameters are developed. The established multidimensional group bridge vulnerability model can be used to quantify and predict the fragility of bridges in multiple intensity regions and the fragility assessment of regional group reinforced concrete girder bridges in the future.