• Title/Summary/Keyword: Dam flushing

Search Result 21, Processing Time 0.024 seconds

Clinical Evaluation and The Diagnositic Significances of Disital Infrared Thermal Image(D.I.T.I.) on the Patients of Dam Hun(痰暈) (담훈(痰暈)환자의 임상적 고찰과 복부 적외선 체열촬영의 의의)

  • Park, Mee-Yeon;Choi, Hae-Yun;Kim, Jong-Dae;Song, Kwang-Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.488-493
    • /
    • 2006
  • To make a objective diagnosis of Dam Hun(痰暈), we investigated the 63 patients with Dam Hun(痰暈) and 34 normal people as control group. we compared the thermal difference between Chon-jung(CV17 ) and Chung-wan(CV12 中脘), Chon-jung(CV17 ) and Gwan-won(CV4 關元) and we compared the thermal difference of Yang-mun(ST21 梁門), Chun_chu(ST25 天樞), Su-do(ST28 水道), too. All 63 patients had dizziness and GI trouble. They had the symptom - fatigue, nausea vomitting, head heaviness, indigestion, cold limbs, headache, heart burn, constipation, diarrhea, anorexia. And some had edema, numbness, insomnia, palpitation, facial flushing, dysuria, ringing. Considering the average temparature of Chon-jung(CV17 ), Chung-wan(CV12 中脘), Gwan-won(CV4 關元), Yang-mun(ST21 梁門), Chun-chu(ST25 天樞), Su-do(ST28 水道) between the patients group and the control group, the patients group were lower than the control group except for Chon-jung(CV17 ), Gwan-won(CV4 關元), but the statistical significance was not. Considering the thermal difference of Chon-jung(CV17 ) and Chung-wan(CV12 中脘), Gwan-won(CV4 關元), Yang-mun(ST21 梁門), Chun-chu(ST25 天樞), Su-do(ST28 氷道) between the patients group and the control group, the temparature deviation of Chon-jung(CV17 ) and Chung-wan(CV12 中脘), Chon-jung(CV17 ) and Yang-mun(ST21 梁門) was significant. We suggest that coldness of upper abdomen is significant in diagnosis of Dam Hun(痰暈).

Application of an Unsteady River Water Quality Model for the Analysis of Reservoir Flushing Effect on Downstream Water Quality (저수지 플러싱 방류 효과분석을 위한 비정상상태 하천수질모형의 적용)

  • Chung, Se-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.857-868
    • /
    • 2004
  • Since the self-purification capacity of rivers in Korea is significantly controlled by environmental maintenance flow supplied by upstream reservoirs during drought season, it is obviously important to operate the river and reservoir systems considering not only water quantity aspect but also conservation of downstream water quality and ecosystem. In this study, an unsteady river water quality model KORIVl- WIN was developed as a tool for evaluating the impact. of reservoir operations on the downstream water quality. The model parameters were calibrated and verified using field data obtained in Geum River on September and October of 2002, respectively. Intensive data sampling was performed on November 22, 2003 to investigate the effect of a short-term flushing discharge of Daecheong Reservoir, which increased outflow from 30 $m^3$/s to 200 $m^3$/s for 6 hours, on downstream water quality. The model performance was evaluated by comparing simulated results with observed data including hydraulics, biochemical oxygen demand(BOD$_{5}$), nitrogen and phosphorus species during the flushing event. It showed very good performance in predicting the travel time of flushing flow and water quality variations of dissolved forms of nitrogen and phosphorus species, while revealed large deviations for BOD$_{5}$ possibly due to missing the effect of organic matters resuspension from river bottom sediment during the wave front passage.

Analysis of Hydraulic Characteristics Upstream of Dam and in Spillway Using Numerical Models (수치모형을 이용한 댐 상류 및 여수로 수리현상 해석)

  • Kim, Young-Han;Oh, Jung-Sun;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.761-776
    • /
    • 2003
  • Numerical models were employed to investigate the hydrodynamics of water flow in the lake behind a dam and the spillway where supercritical flows and negative pressures are likely to occur. In this study, 2-D model, RMA2 was employed to examine the upstream flow pattern and 3-D CFD model, FLUENT was used to evaluate the three-dimensional flow in the approaching region and flow distributions in the spillways and discharge culverts. The bathymetry and the details of structures were carefully taken into consideration in building the models. The results from applying the 2-D model for the planned Hantan River Dam show that large eddies, the velocity of which reaches up to 1 m/s are occurring in several places upstream of the dam. That means that the 2-D numerical model could be utilized to investigate the two-dimensional flow patterns after the construction of a dam. Three-dimensional numerical results show that the approach flow varies depending on stages and discharge conditions, and velocities at spillways, discharge culverts, and sediment flushing tunnels are differently distributed. The velocity distributions obtained from the numerical model and a hydraulic model at the centerline of spillways 100 m upstream of the dam show reasonably similar results. It is expected that 2-D and 3-D numerical models ate useful tools to help optimize the dam design through investigating the flow patterns in the spillway and at the upstream of the dam, which is not always feasible in hydraulic modeling.

Effects of Salix subfragilis communities on water quality in Namgang Dam reservoir (남강댐 선버들 군락이 수질에 미치는 영향)

  • Kim, Ki Heung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1065-1076
    • /
    • 2022
  • The purpose of this study was to investigate the effect of the expansion and withering of Salix subfragilis communities on the water quality in Namgang Dam reservoir. The distribution area of the Salix subfragilis communities was 0.12 km2 in 2003 for the first time, but it was 3.58 km2 in 2019, which has increased rapidly by about 30 times in 16 years. However, in 2013, the distribution area has decreased by 0.17 km2 due to long-term immersion in high turbidity, and self-thinning in Salix subfragilis communities. The lake characteristics of reservoir showed a combination of lake type and river type in terms of average water depth, watershed area/lake surface area ratio, water residence time, flushing rate, and stratification. From the result of analyzing long-term changes in lake water quality, COD, TP, and chlorophyll-a in Salix subfragilis communities were significantly larger than those in the three points located in the central part of reservoir. In particular, the fact that the value of chlorophyll-a showed the maximum value in winter rather than summer, unlike the trend of the three points in the Namgang Dam water quality monitoring network, is thought to have occurred internally rather than externally. It can be estimated that one cause of this deterioration of the water quality in Namgang Dam reservoir is the huge amount of nutrients generated in the decomposition process of by-products such as fallen leaves, branches and withered trees in Salix subfragilis communities.

Spatial and Temporal Variability of Water Quality in Korean Dam Reservoirs

  • Lim, Go-Woon;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.452-464
    • /
    • 2009
  • The objectives of this study were to evaluate spatial and temporal variability of water quality in 10 reservoirs and identify the key nutrients (N, P) influencing chlorophyll-a (CHL) along with analysis of empirical models and zonal patterns of total phosphorus (TP) and CHL. We analyzed total nitrogen (TN), TP, CHL, water clarity (Secchi depth, SD), and evaluated potential limiting nutrient using ambient N:P ratios and previous criteria of ambient nutrients. Water clarity and CHL varied largely depending on the seasonal monsoon and type of reservoir, but trophic state was diagnosed as eutrophy, base on mean CHL in most reservoirs. The peak of TP did not match the contents of CHL due to rapid flushing during the high run-off period. In the reservoir of DR, regression coefficient in the $P_r$ was 0.510 but was 0.159 in the $M_o$, while the TP-CHL relation in the YR increased during the monsoon compared to the premonsoon. The regression coefficient in the $P_r$ was not statistically significant but the value of $M_o$ was 0.250. TP showed similar longitudinal zonal gradients among the reservoirs of DR, YR and JR. Empirical models of TP-CHL, based on overall data, showed that CHL was determined by phosphorus($R^2=0.244$, p=0.0019). Regression analysis of CHL-SD showed a stronger linear fit ($R^2=0.638$, p<0.001) than the TP-CHL model.

A Study on the Water Quality Affected by the Rainfall and Influent Rivers in Paldang Reservoir, Korea (강우 및 유입 하천수가 팔당호 수질에 미치는 영향분석)

  • Kim, Jongmin;Noh, Hyeran;Heo, Seongnam;Yang, Heejeong;Park, Jundae
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.277-283
    • /
    • 2005
  • This paper aimed to compare the daily water quality as well as the hydrological data gathered for the past two years (2000 to 2001) between the two influent rivers of Paldang reservoir. The analysis also has been carried out to draw out the factors that affect the water quality at the dam site, where the main drinking water drawing point is located. The relationship between total amount of monthly rainfall and monthly inflow showed $r^2=0.74$ (p<0.05). The highest peak of inflow of influent rivers recorded in August and September (in the year of 2000) and July and August (2001). Average inflows of influent rivers in 2000 and 2001 are calculated at 209.0, 161.5 CMS (Bughangang), 268.6, 148.2 CMS(Namhangang), and 7.8, 5.0 CMS (Gyeongancheon). The formula which was driven from the relationship between inflow and COD load of influent rivers, explained that COD concentration in general increased with the inflow. But during the rainy seasons (July, August, and September), COD concentration decreased according to the increase of inflow. The daily rainfall and COD concentration(or load) during the rainy season (August and September in the year of 2000, July and August in 2001) indicated that the peak of COD load correspond with the rainfall, which decreased sharply after 3 or 4 days. The reason was thought that the high COD load was diluted rapidly by the rain flow. Water temperature, pH and conductivity measured at dam site decreased obviously when the inflow sharply increased. Peak period of total phosphorus concentration coincided with that of inflow. In rainy season, chlorophyll-a concentration decreased obviously as the inflow increased. The reason can be ascribed to the flushing effect caused by the operation of floodgate.

Resuspension of Cohesive Sediment under Presence of Gas Bubbles (기포에 의한 점착성 퇴적물의 부유)

  • Kim, Jong-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.4 s.153
    • /
    • pp.313-321
    • /
    • 2005
  • The elimination and erosion of cohesive sediments in port and reservoir water can so far be processed only with mechanical evacuation methods under extreme energy expenditure. The so-called flushing jets do not serve the purpose because they cannot set the material spaciously in motion despite high shear stresses at the bed. Therefore this study aims to examine the resuspension of the deposited fine material($Al_{2}O_3$) under presence of gas bubbles in order to decreased cohesive sediments in multipurpose dam, port and lakes. In the case of laboratory trial important parameters considered are supplied amount of air and the consolidation time of the solid materials. With increasing gas content alumina remains in suspension at high pH values in the laboratory test, where the particles fall mote rapidly without air addition.

Prediction of Downstream Water Quality following Dam Construction (댐 건설에 의한 하류 수질변화 예측)

  • Han, Kun-Yeun;Choi, Hyun-Gu;Na, Chang-Hwan;Kwon, Na-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.943-946
    • /
    • 2010
  • 과거 시행된 수질오염물질의 농도규제 정책은 오염배출업소 증가로 인한 오염총량의 증가를 억제할 수 없어 수질개선에 한계가 나타났다. 이에 정부는 배출농도 규제방식의 수질관리로 4대강 상수원의 수질개선이 어려워 4대강 특별법 제정과 함께 목표수질기준 한도에서 유역의 오염물질 배출량을 총체적으로 관리하는 오염총량관리제도를 도입하였고, 현재 수질오염총량관리제도의 안정적 시행을 위해, 제 2단계 수질오염총량관리 대상물질 선정연구, 4대강 수계 수질오염총량관리 유황별 유달율 산정 방법 연구 등이 시행되고 있다. 이와 같은 오염총량관리를 위해서는 먼저 유역의 오염물질 발생현황과 배출 기작을 정량적으로 규명하고, 수질모델링을 실시하여 오염배출원별로 적정부하량을 할당하여야 한다. 이에 본 연구에서는 향후 활용도가 클 것으로 기대되는 QUALKO2 모형을 이용하여 TMDL시스템을 지원하고 낙동강의 수질을 예측 평가 하고자 한다. 대상유역으로는 영주 다목적댐이 위치하게 되는 내성천과 낙동강을 선정하였으며 모의 입력자료로는 최근 3년간의 평균수질을 비교대상인 현재 상태로 설정하고, 해당유역의 발생배출량에 따라 2014년, 2019년, 2024년의 저수지 모의를 통해 하천모의의 입력자료로 사용하였다. 수질모델 적용을 위해 내성천이 유입되는 지점에서 8km상류의 예천(환경부 측정망)지점에서부터 양산천 유입 후 3km 지점까지 범위를 설정하였으며 모델 구간은 "낙동강수계 오염총량관리 기본계획" 수립시 적용한 구간을 고려하여 구성하였다. 내성천 상류 영주댐 건설 지점에서부터 낙동강 본류로 합류되기 전의 구간과 낙동강 본류 구간을 구분하였으며, 수리학적 지형학적 특성을 고려하여 구간(reach)으로 구분하고 각 구간을 1km 간격의 요소(element)로 세분화하여 총 96여개의 구간과 482여개의 요소로 구성하였다. 영주댐이 건설되는 가정하에 낙동강 본류의 유량조건별, 영주댐의 방류량 조건에 따른 내성천과 낙동강 본류의 수질변화 양상 분석결과, 저수시 보다는 갈수시에 수질농도의 저감효과가 크게 나타났으며, 영주댐의 연평균방류보다는 최대방류시에 내성천과 낙동강 본류의 저감효과가 큰 것으로 분석되었다. 또한 영주댐 건설로 인한 flushing 효과와 낙동강 상류의 안동댐과의 연계시에 낙동강에서 저감효과가 가장 크게 나타났다.

  • PDF

Fossil Saline Groundwater and Their Flushing Out At Gilsan Stream Catchment in the Western Coastal Area of Seocheon, Korea (서천 해안지역 길산천 소유역에서의 고염분 지하수와 씻김 현상)

  • Sang-Ho Moon;Yoon Yeol Yoon;Jin-Yong Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.671-687
    • /
    • 2022
  • It has been reported that about 47% of groundwater wells within 10 km from the coastline in the western/southern coastal areas of Korea were affected by seawater. It has been interpreted that the cause of groundwater salinization is seawater intrusion. The Gilsan stream in the Seocheon area was a tidal stream until the Geumgang estuary dam was constructed and operated. Therefore, it is likely that the Gilsan stream catchment was deposited with sediments containing high-saline formation water prior to the use of landfill farmland at this catchment area. The groundwater in this study area showed EC values ranging from 111 to 21,000 µS/cm, and the water quality types were diverse including Ca(or Na)-HCO3, Ca(or Na)-HCO3(Cl), Na-Cl(HCO3), Na-Cl types. It is believed that this diversity of water quality is due to the mixing of seawater and fresh groundwater generated by infiltration of precipitation and surface water through soil and weathered part. In this study, we discussed whether this water quality diversity and the presence of saline groundwater are due to present seawater intrusion or to remnant high-saline pore water in sediments during flushing out process. For this, rain water, surface water, seawater, and groundwater were compared regarding the water quality characteristics, tritium content, oxygen/hydrogen stable isotopic composition, and 87Sr/86Sr ratio. The oxygen/hydrogen stable isotopic compositions indicated that water composition of saline groundwaters with large EC values are composed of a mixture of those of fresh groundwater and surface water. Also, the young groundwater estimated by tritium content has generally higher NO3 content. All these characteristics showed that fresh groundwater and surface water have continued to affect the high-saline groundwater quality in the study area. In addition, considering the deviation pattern in the diagrams of Na/Cl ratio versus Cl content and SAR (sodium adsorption ratio) versus Cl content, in which two end members of fresh surface-ground water and seawater are assumed, it is interpreted that the groundwater in the study area is not experiencing present seawater intrusion, but flush out and retreating from ancient saline formation water.

Spatial and Temporal Distribution Characteristics of Zooplankton Appeared on Early Construction of Pumped Storage Power Plant Dam (양수발전댐의 건설 초기에 발생한 동물플랑크톤군집의 시.공간적인 분포특성)

  • Lee, Jaeyong;Jung, Sungmin;Chang, Kun;Kim, Bomchul
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.spc
    • /
    • pp.57-65
    • /
    • 2014
  • Spatial and temporal distributions of zooplankton were measured in an oligotrophic pumped storage-type hydroelectric reservoir which was composed of two reservoirs exchanging water daily, with water going up at night and going down during the day. Repetitive diel disturbance of the water column can be a unique feature of this reservoir system. Chl-${\alpha}$ concentration was highest in the early winter season. Phytoplankton density was lower in summer monsoon due to high flushing rate on rainy days. The zooplankton density was higher in the smaller upper reservoir possibly due to lower fish density in the upper reservoir. In the seasonal variation a time gap was observed between the phytoplankton bloom and the zooplankton bloom (particularly a rotifer, Keratella cochlearis). It is likely to that Keratella production is partially supported by heterotrophic food sources than phytoplankton. The dominance of a mixotrophic dinoflagellate (Peridinium bipes f. ocultatum) might have complicated the trophic relationship between phytoplankton and zooplankton. Our results provide some ecological information of zooplankton community in a highly disturbed alpine reservoir ecosystem relying on mostly allochthonous organic matter.