• Title/Summary/Keyword: Dairy milk productions

Search Result 4, Processing Time 0.019 seconds

Estimating milk production losses by heat stress and its impacts on greenhouse gas emissions in Korean dairy farms

  • Geun-woo, Park;Mohammad, Ataallahi;Seon Yong, Ham;Se Jong, Oh;Ki-Youn, Kim;Kyu-Hyun, Park
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.770-781
    • /
    • 2022
  • Meteorological disasters caused by climate change like heat, cold waves, and unusually long rainy seasons affect the milk productivity of cows. Studies have been conducted on how milk productivity and milk compositions change due to heat stress (HS). However, the estimation of losses in milk production due to HS and hereby environmental impacts of greenhouse gas (GHG) emissions are yet to be evaluated in Korean dairy farms. Dairy milk production and milk compositions data from March to October 2018, provided by the Korea Dairy Committee (KDC), were used to compare regional milk production with the temperature-humidity index (THI). Raw data for the daily temperature and relative humidity in 2018 were obtained from the Korea Meteorological Administration (KMA). This data was used to calculate the THI and the difference between the maximum and minimum temperature changing rate, as the average daily temperature range, to show the extent to which the temperature gap can affect milk productivity. The amount of milk was calculated based on the price of 926 won/kg from KDC. The results showed that the average milk production rate was the highest within the THI range 60-73 in three regions in May: Chulwon (northern region), Hwasung (central region), and Gunwi (southern region). The average milk production decreased by 4.96 ± 1.48% in northern region, 7.12 ± 2.36% in central region, and 7.94 ± 2.57% in southern region from June to August, which had a THI range of 73 or more, when compared to May. Based on the results, the level of THI should be maintained like May. If so, the farmers can earn a profit of 9,128,730 won/farm in northern region, 9,967,880 won/farm in central region, and 12,245,300 won/farm in southern region. Additionally, the average number of cows raised can be reduced by 2.41 ± 0.35 heads/farm, thereby reducing GHG emissions by 29.61 ± 4.36 kg CO2eq/day on average. Overall, the conclusion suggests that maintaining environmental conditions in the summer that are similar to those in May is necessary. This knowledge can be used for basic research to persuade farmers to change farm facilities to increase the economic benefits and improve animal welfare.

Genetic Relationship between Milk Production, Calving Ease and Days Open at First Parity in Holstein Cows

  • Lee, D.H.;Han, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.153-158
    • /
    • 2004
  • Data containing 14,188 lactation and reproductive records of Korean Holstein cows at first parity distributed across 3,734 herd-year-season groups were analyzed to get genetic (co)variance estimates for milk yield, fat yield, calving ease, and days open. Milk and Fat yields were adjusted to 305 d. Heritabilities and genetic correlations were estimated in two different animal models on which were included direct genetic effects (Model 1) and direct+maternal genetic effects (Model 2) using REML algorithms. Milk and fat yields were affected by age at first calving as linear and quadratic. Heritability estimates of direct effects were 0.25 for milk yield, 0.17 for fat yield, 0.03 for calving ease and 0.03 for days open in Model 2. These estimates for maternal effects were 0.05, 0.08, 0.04 and less than 0.01 for each corresponding trait. Milk productions at first lactation were to show genetically favorable correlation with calving ease and days open for direct genetic effects (-0.24 - -0.11). Moreover, calving ease was correlated with days open of 0.30 for direct genetic effects. Correlations between direct and maternal effects for each trait were negatively correlated (-0.63 - -0.32). This study suggested that maternal additive genetic variance would be not ignorable for genetic evaluation of milk production as well as reproductive traits such as calving ease and days open at first parity. Furthermore, difficult calving would genetically influence the next conception.

Genetic analysis of milk production traits of Tunisian Holsteins using random regression test-day model with Legendre polynomials

  • Zaabza, Hafedh Ben;Gara, Abderrahmen Ben;Rekik, Boulbaba
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.636-642
    • /
    • 2018
  • Objective: The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day (TD) model. Methods: A random regression multiple trait multiple lactation TD model was used to estimate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, fat, and protein from the first three lactations. Random regressions were modeled with third-order Legendre polynomials for the additive genetic, and permanent environment effects. Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs sampler. Results: All variance components tended to be high in the beginning and the end of lactations. Additive genetic variances for milk, fat, and protein yields were the lowest and were the least variable compared to permanent variances. Heritability values tended to increase with parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic correlations among traits were up to 0.74. Genetic correlations among lactations for the yield traits were relatively high and ranged from $0.78{\pm}0.01$ to $0.82{\pm}0.03$, between the first and second parities, from $0.73{\pm}0.03$ to $0.8{\pm}0.04$ between the first and third parities, and from $0.82{\pm}0.02$ to $0.84{\pm}0.04$ between the second and third parities. Conclusion: These results are comparable to previously reported estimates on the same population, indicating that the adoption of a random regression TD model as the official genetic evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible in the Tunisian Holsteins.

Genetic Parameters for Milk Production and Somatic Cell Score of First Lactation in Holstein Cattle with Random Regression Test-Day Models (임의회귀 검정일 모형을 이용한 홀스타인 젖소의 1산차 산유형질 및 체세포지수에 대한 유전모수)

  • Lee, D.H.;Jo, J.H.;Han, K.G.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.739-748
    • /
    • 2003
  • The objective of this study was to estimate genetic parameters for test-day milk production and somatic cell score using field data collected by dairy herd improvement program in Korea. Random regression animal models were applied to estimate genetic variances for milk production and somatic cell score. Heritabilities for milk yields, fat percentage, protein percentage, solid-not-fat percentage, and somatic cell score from test day records of 5,796 first lactation Holstein cows were estimated by REML algorithm in single trait random regression test-day animal models. For these analyses, Legendre polynomial covariate function was applied to model the fixed effect of age-season, the additive genetic effect and the permanent environment effect as random. Homogeneous residual variance was assumed to be equal throughout lactation. Heritabilities as a function of time were calculated from the estimated curve parameters from univariate analyses. Heritability estimates for milk yields were in range of 0.13 to 0.29 throughout first lactation. Heritability estimates for fat percentage, protein percentage and solid-not-fat percentage were within 0.09 to 0.11, 0.12 to 0.19 and 0.17 to 0.23, respectively. For somatic cell score, heritabilities were within 0.02 to 0.04. Heritabilities for milk productions and somatic cell score were fluctuated by days in milk with comparing 305d milk production.