• Title/Summary/Keyword: Daily mean air temperature

Search Result 152, Processing Time 0.025 seconds

Evaluation of Temperature and Precipitation on Integrated Climate and Air Quality Modeling System (ICAMS) for Air Quality Prediction (대기질 예측을 위한 기후·대기환경 통합모델링시스템 (ICAMS)의 기온 및 강수량 예측 능력 평가)

  • Choi, Jin-Young;Kim, Seung-Yeon;Hong, Sung-Chul;Lee, Jae-Bum;Song, Chang-Keun;Lee, Hyun-Ju;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.615-631
    • /
    • 2012
  • This study provides an evaluation for capability of Integrated Climate and Air quality Modeling System (ICAMS) on future regional scale climate projection. Temperature and precipitation are compared between ground-level observation data and results of regional models (MM5) for the past 30 years over the Korean peninsula. The ICAMS successfully simulates the local-scale spatial/seasonal variation of the temperature and precipitation. The probability distribution of simulated daily mean and minimum temperature agree well with the observed patterns and trends, although mean temperature shows a little cold bias about $1^{\circ}C$ compared to observations. It seems that a systematic cold bias is mostly due to an underestimation of maximum temperature. In the case of precipitation, the rainfall in winter and light rainfall are remarkably simulated well, but summer precipitation is underestimated in the heavy rainfall phenomena of exceeding 20 mm/day. The ICAMS shows a tendency to overestimate the number of washout days about 7%. Those results of this study indicate that the performance of ICAMS is reasonable regarding to air quality predication over the Korean peninsula.

Using Effective Temperatures to Determine Safety Cultivation Season in Direct Seeding Rice on Dry Paddy (작물생육 유효기온 출현시기를 이용한 건답직파 벼의 지역별 안전작기 설정)

  • 최돈향;윤경민;윤성호;박무언
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.666-672
    • /
    • 1997
  • Twenty years' daily mean air temperature data was used to calculate the critical early seeding date(CESD), the optimum heading date(OHD), the critical late heading date for stable ripening(CHDR) and the critical late ripening date(CLRD) for rice seeded on dry paddy in different agroclimatic zones in Korea. The CESD was defined as the first day with mean air temperature of 13$^{\circ}C$, and the OHD as the first day of the 40 consecutive days with mean air temperature of 22$^{\circ}C$ or above after heading. The CHDR was defined as the date after which the cumulative daily mean air temperature would be at least 76$0^{\circ}C$. Lastly, the CLRD was defined as the last day when daily mean air temperature remains above 15$^{\circ}C$. This information was used for the estimation of periods from the earliest date of seeding to optimum heading date, the latest possible date of heading and the latest possible date of ripening in respective regions. For instance, in Suwon, those respective periods mentioned were found to be 104days, 124days, and 165days.

  • PDF

Extension Test of Midday Apparent Evapotranspiration toward Daily Value Using a Complete Remotely-Sensed Input

  • Han, Kyung-Soo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.341-349
    • /
    • 2003
  • The so-called B-method, a simplified surface energy budget, permits calculation of daily actual evapotranspiration (ET) using remotely sensed data, such as NOAA-AVHRR. Even if the use of satellite data allows estimation of the albedo and surface temperature, this model requires meteorological data measured at ground-level to obtain the other inputs. In addition, a difficulty may be occurred by the difference of temporal scales between the net radiation in daily scale and instantaneous measurement at midday of the surface and air temperatures because the data covered whole day are necessary to obtain accumulated daily net radiation. In order to solve these problems, this study attempted a modification of B-method through an extension of hourly ET value calculated using a complete instantaneous inputs. The estimation of the daily apparent ET from newly proposed system showed a root mean square error of 0.26 mm/day as compared the output obtained from the classical model. It is evident that this may offer more rapid estimation and reduced data volume.

Analyzing Information Value of Temperature Forecast for the Electricity Demand Forecasts (전력 수요 예측 관련 의사결정에 있어서 기온예보의 정보 가치 분석)

  • Han, Chang-Hee;Lee, Joong-Woo;Lee, Ki-Kwang
    • Korean Management Science Review
    • /
    • v.26 no.1
    • /
    • pp.77-91
    • /
    • 2009
  • It is the most important sucess factor for the electricity generation industry to minimize operations cost of surplus electricity generation through accurate demand forecasts. Temperature forecast is a significant input variable, because power demand is mainly linked to the air temperature. This study estimates the information value of the temperature forecast by analyzing the relationship between electricity load and daily air temperature in Korea. Firstly, several characteristics was analyzed by using a population-weighted temperature index, which was transformed from the daily data of the maximum, minimum and mean temperature for the year of 2005 to 2007. A neural network-based load forecaster was derived on the basis of the temperature index. The neural network then was used to evaluate the performance of load forecasts for various types of temperature forecasts (i.e., persistence forecast and perfect forecast) as well as the actual forecast provided by KMA(Korea Meteorological Administration). Finally, the result of the sensitivity analysis indicates that a $0.1^{\circ}C$ improvement in forecast accuracy is worth about $11 million per year.

Mean Heat Flux at the Port of Yeosu (여수항의 평균 열플럭스)

  • Choi Yong-Kyu;Yang Jun-Hyuk
    • Journal of Environmental Science International
    • /
    • v.15 no.7
    • /
    • pp.653-657
    • /
    • 2006
  • Based on the monthly weather report of Korea Meteorological Administration (KMA) and daily sea surface temperature (SST) data from National Fisheries Research and Development Institute (NFRDI) (1995-2004), mean heat fluxes were estimated at the port of Yeosu. Net heat flux was transported from the air to the sea surface during February to September, and it amounts to $205 Wm^{-2}$ in daily average value in May. During October to January, the transfer of net heat flux was conversed from the sea surface to the air with $-70 Wm^{-2}$ in minimum of daily average value in December. Short wave radiation was ranged from $167 Wm^{-2}$ in December to $300 Wm^{-2}$ in April. Long wave radiation (Sensible heat) was ranged from $27 (-14) Wm^{-2}$ in July to $90 (79) Wm^{-2}$ in December. Latent heat showed $42 Wm^{-2}$ with its minimum in July and $104 Wm^{-2}$ with its maximum in October in daily average value.

Relationship between Phenological Stages and Cumulative Air Temperature in Spring Time at Namsan

  • Min, Byeong-Mee;Yi, Dong-Hoon;Jeong, Sang-Jin
    • Journal of Ecology and Environment
    • /
    • v.30 no.2
    • /
    • pp.143-149
    • /
    • 2007
  • To certify predictability for the times of phenological stages from cumulative air temperature in springtime, the first times of budding, leafing, flower budding, flowering and deflowering for 14 woody plants were monitored and air temperature was measured from 2005 to 2006 at Namsan. Year day index (YDI) and Nuttonson's Index (Tn) were calculated from daily mean air temperature. Of the 14 woody species, mean coefficient of variation was 0.04 in Robinia pseudo-acacia and 0.09 in Alnus hirsuta. However, mean coefficient of variation was 0.30 in Forsythia koreana and Stephanandra incisa and 0.32 in Zanthoxylum schinifolium. Therefore, the times of each phenological stage could be predicted in the former two species but not in latter three species by two indices. Of the five phenological stages, mean coefficient of variation was the smallest at deflowering time and the largest at budding time. In five phenological stages, mean coefficient of variation of YDI was in the range of $0.11{\sim}0.21$ but that of Tn was in the range of $0.15{\sim}0.26$. Therefore, the former was a better index than the latter. Of the species-phenological stage pair, coefficient of variation of YDI was 0.01 in Acer pseudo-sieboldianum - flower budding and below 0.05 in 11 pairs, whereas the YDIs over 0.40 were 4 pairs comprising of Prunus leveilleana - budding (0.51). Coefficient of variation of Tn was 0.01 in A. hirsuta - budding and below 0.05 in 8 pairs. The Tns over 0.40 were 5 pairs comprising of F. koreana - flower budding (0.66).

Development of a Grid-Based Daily Land Surface Temperature Prediction Model considering the Effect of Mean Air Temperature and Vegetation (평균기온과 식생의 영향을 고려한 격자기반 일 지표토양온도 예측 모형 개발)

  • Choi, Chihyun;Choi, Daegyu;Choi, Hyun Il;Kim, Kyunghyun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.137-147
    • /
    • 2012
  • Land surface temperature in ecohydrology is a variable that links surface structure to soil processes and yet its spatial prediction across landscapes with variable surface structure is poorly understood. And there are an insufficient number of soil temperature monitoring stations. In this study, a grid-based land surface temperature prediction model is proposed. Target sites are Andong and Namgang dam region. The proposed model is run in the following way. At first, geo-referenced site specific air temperatures are estimated using a kriging technique from data collected from 60 point weather stations. Then surface soil temperature is computed from the estimated geo-referenced site-specific air temperature and normalized difference vegetation index. After the model is calibrated with data collected from observed remote-sensed soil temperature, a soil temperature map is prepared based on the predictions of the model for each geo-referenced site. The daily and monthly simulated soil temperature shows that the proposed model is useful for reproducing observed soil temperature. Soil temperatures at 30 and 50 cm of soil depth are also well simulated.

A Meta-Analysis of Air Pollution in Relation to Daily Mortality in Seven Major Cities of Korea, 1998-2001 (메타분석을 적용한 전국 7개 대도시의 대기오염과 일일사망발생의 상관성 연구(1998년$\sim$2001년))

  • Cho, Yong-Sung;Lee, Jong-Tae;Son, Ji-Young;Kim, Yoon-Shin
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.304-315
    • /
    • 2006
  • This study is performed to reexamine the association between ambient air pollution and daily mortality in seven major cities of Korea using a method of meta-analysis with the data filed for the period 1998-2001. These cities account for half of the Korean population (about 23 million). The observed concentrations of carbon monoxide (CO, mean=1.08 ppm), ozone ($O_3$, mean=33.97 ppb), particulate matter less than 10 ${\mu}m$ ($PM_{10},\;mean=57.11\;{\mu}g/m^3$), nitrogen dioxide ($NO_2$, mean=25.09 ppb), and sulfur dioxide ($SO_2$, mean=9.14 ppb) during the study period were at levels below Korea's current ambient air quality standards. Generalized additive models were applied to allow for the highly flexible fitting of seasonal and long-term time trends in air pollution as well as nonlinear associations with weather variables, such as air temperature and relative humidity. Also, we calculated a weighted mean as a meta-analysis summary of the estimates and its standard error. In city-specific analyses, an increase of $41.17{\mu}g/m^3(IQR)\;of\;PM_{10}$ corresponded to $1{\sim}12%$ more deaths, given constant weather conditions. Like most of air pollution epidemiologic studies, this meta-analysis cannot avoid fleeing from measurement misclassification since no personal measurement was taken. However, we can expect that a measurement bias be reduced in district-specific estimate since a monitoring station is better representative of air quality of the matched district. Significant heterogeneity was found for the effect of all pollutants. The estimated relative risks from meta-like analysis increased compared to those relative risks from pooled analysis. The similar results to those from the previous studies indicated existence of health effect of air pollution at current levels in many industrialized countries, including Korea.

Relationships between Seasonal Duration of Sunshine and Air Temperature in Korea (우리나라의 계절별(季節別) 일조시간(日照時間)과 기온(氣溫)의 상관관계(相關關係) 및 분포(分布)에 관(關)한 연구(硏究))

  • Lee, Jeong-Taek;Yun, Seong-Ho;Park, Moo-Eon
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.155-162
    • /
    • 1995
  • To find out the relationship between duration of sunshine and mean air temperature, monthly climatic data were analyzed in several locations in Korea. Even though mean air temperature was high in summer, duration of sunshine was shorter than winter in Kangneung. Net radiation showed a positive correlation with duration of sunshine and its regression coefficient was the highest in July. An increasing rate of sensible heat flux according to the increment of sunshine hours was significantly high in April and October, but was low in July. In spring and fall, duration of sunshine was positively correlated with the daily temperature difference, but in summer and winter it was negatively correlated with maximum temperature and with the minimum temperature, respectively. In January, one hour increase in sunshine hour lowered the mean air temperature by 1 to $1.7^{\circ}C$.

  • PDF