• Title/Summary/Keyword: Daily Maximum Depth of Snowfall

Search Result 5, Processing Time 0.017 seconds

Frequency Analysis Using Bootstrap Method and SIR Algorithm for Prevention of Natural Disasters (풍수해 대응을 위한 Bootstrap방법과 SIR알고리즘 빈도해석 적용)

  • Kim, Yonsoo;Kim, Taegyun;Kim, Hung Soo;Noh, Huisung;Jang, Daewon
    • Journal of Wetlands Research
    • /
    • v.20 no.2
    • /
    • pp.105-115
    • /
    • 2018
  • The frequency analysis of hydrometeorological data is one of the most important factors in response to natural disaster damage, and design standards for a disaster prevention facilities. In case of frequency analysis of hydrometeorological data, it assumes that observation data have statistical stationarity, and a parametric method considering the parameter of probability distribution is applied. For a parametric method, it is necessary to sufficiently collect reliable data; however, snowfall observations are needed to compensate for insufficient data in Korea, because of reducing the number of days for snowfall observations and mean maximum daily snowfall depth due to climate change. In this study, we conducted the frequency analysis for snowfall using the Bootstrap method and SIR algorithm which are the resampling methods that can overcome the problems of insufficient data. For the 58 meteorological stations distributed evenly in Korea, the probability of snowfall depth was estimated by non-parametric frequency analysis using the maximum daily snowfall depth data. The results of frequency based snowfall depth show that most stations representing the rate of change were found to be consistent in both parametric and non-parametric frequency analysis. According to the results, observed data and Bootstrap method showed a difference of -19.2% to 3.9%, and the Bootstrap method and SIR(Sampling Importance Resampling) algorithm showed a difference of -7.7 to 137.8%. This study shows that the resampling methods can do the frequency analysis of the snowfall depth that has insufficient observed samples, which can be applied to interpretation of other natural disasters such as summer typhoons with seasonal characteristics.

The Distribution of Precipitation in Donghae-Shi (동해시의 강수 분포 특성)

  • 이장렬
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 1999
  • This study examined the spatial distribution of precipitation in Donghae-Shi. The daily, monthly precipitaion on the 2 stations, 3 AWS(Automatic Weather Station) were analyzed by altitudinal distribution, the air pressure type and days of daily precipitation. The results of the study are as follows. 1 Hour greatest precipitation is 62.4mm(1994. 10. 12), Daily greatest precipitation, 200mm(1994. 10. 12), Monthly greatest precipitation, 355.5mm(1994. 10), Maximum depth of snow fall, 35.5cm(1994. 1. 29) in Donghae-Shi, 1993∼1997. Altitudinal distribution of precipitation in Summer tends to have more precipitation at higher altitude, in Winter, high mountains and coast have more precipitation than other sites do. The heavy rainfall in Donghae-Shi is mainly formed by a Typhoon, next is Jangma front. The number of consecutive days of daily precipitation $\geq$20mm is 81days, 44days of those appeared in Summer season. The synoptic environment causes the difference in observed the heavy snowfall amount between high mountains and coast.

  • PDF

Estimation of Snow Damages using Multiple Regression Model - The Case of Gangwon Province - (대설피해액 추정을 위한 다중회귀 모형의 적용성 평가 - 강원도 지역을 중심으로 -)

  • Kwon, Soon Ho;Chung, Gunhui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.61-72
    • /
    • 2017
  • Due to the climate change, damages of human life and property caused by natural disaster have recently been increasing consistently. In South Korea, total damage by natural disasters over 20 years from 1994 to 2013 is about 1.0 million dollars. The 13% of total damage caused by heavy snow. This is smaller amount than the damage by heavy rainfall or typhoon, but still could cause severe damage in the society. In this study, the snow damage in Gangwon region was estimated using climate variables (daily maximum snow depth, relative humidity, minimum temperature) and scoio-economic variables (Farm population density, GRDP). Multiple regression analysis with enter method was applied to estimate snow damage. As the results, adjusted R-square is above 0.7 in some sub-regions and shows the good applicability although the extreme values are not predicted well. The developed model might be applied for the prompt disaster response.

Extraction of Snowmelt Parameters using NOAA AVHRR and GIS Technique for 7 Major Dam Watersheds in South Korea (NOAA AVHRR 영상 및 GIS 기법을 이용한 국내 주요 7개 댐 유역의 융설 매개변수 추출)

  • Shin, Hyung Jin;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.177-185
    • /
    • 2008
  • Accurate monitoring of snow cover is a key component for studying climate and global as well as for daily weather forecasting and snowmelt runoff modelling. The few observed data related to snowmelt was the major cause of difficulty in extracting snowmelt factors such as snow cover area, snow depth and depletion curve. Remote sensing technology is very effective to observe a wide area. Although many researchers have used remote sensing for snow observation, there were a few discussions on the characteristics of spatial and temporal variation. Snow cover maps were derived from NOAA AVHRR images for the winter seasons from 1997 to 2006. Distributed snow depth was mapped by overlapping between snow cover maps and interpolated snowfall maps from 69 meteorological observation stations. Model parameters (Snow Cover Area: SCA, snow depth, Snow cover Depletion Curve: SDC) were built for 7 major watersheds in South Korea. The decrease pattern of SCA for time (day) was expressed as exponentially decay function, and the determination coefficient was ranged from 0.46 to 0.88. The SCA decreased 70% to 100% from the maximum SCA when 10 days passed.

Frequency analysis for annual maximum of daily snow accumulations using conditional joint probability distribution (적설 자료의 빈도해석을 위한 확률밀도함수 개선 연구)

  • Park, Heeseong;Chung, Gunhui
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.627-635
    • /
    • 2019
  • In Korea, snow damage has been happened in the region with no snowfalls in history. Also, casual damage was caused by heavy snow. Therefore, policy about the Natural Disaster Reduction Comprehensive Plan has been changed to include the mitigation measures of snow damage. However, since heavy snow damage was not frequent, studies on snowfall have not been conducted in different points. The characteristics of snow data commonly are not same to the rainfall data. For example, some parts of the southern coastal areas are snowless during the year, so there is often no values or zero values among the annual maximum daily snow accumulation. The characteristics of this type of data is similar to the censored data. Indeed, Busan observation sites have more than 36% of no data or zero data. Despite of the different characteristics, the frequency analysis for snow data has been implemented according to the procedures for rainfall data. The frequency analysis could be implemented in both way to include the zero data or exclude the zero data. The fitness of both results would not be high enough to represent the real data shape. Therefore, in this study, a methodology for selecting a probability density function was suggested considering the characteristics of snow data in Korea. A method to select probability density function using conditional joint probability distribution was proposed. As a result, fitness from the proposed method was higher than the conventional methods. This shows that the conventional methods (includes 0 or excludes 0) overestimated snow depth. The results of this study can affect the design standards of buildings and also contribute to the establishment of measures to reduce snow damage.