• Title/Summary/Keyword: Daejeon Waste Water Treatment Plant

Search Result 3, Processing Time 0.017 seconds

Analysis on Trends and Major Impact Factors of Water Quality Dynamics in the Gab-Cheon River, Daejeon, Korea (대전 갑천의 수질변화 경향 및 주요 수질 영향 인자 분석)

  • Lee, Gayoung;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.9
    • /
    • pp.517-525
    • /
    • 2015
  • This study analyzes water quality change trends in three major rivers in Daejeon and effect of discharge from Daejeon Wastewater Treatment Plant between 1992 and 2014. As of 2014, COD concentration in the Gab-cheon-A station is in level VI for Korea river water quality standard while BOD and TP are in level III. As expansions of the treatment plant, water quality in the Gab-cheon River has been improving accordingly. However, during the study period, TN concentrations of the headwater and the most downstream locations of the Gab-cheon River have increased about twice and three times, respectively. It was estimated that the treatment plant is responsible for 35%. 46%, 76% and 63% of BOD, COD, TN and TP loadings of the Gab-cheon River, respectively. It was also estimated that small tributaries and nonpoint sources are responsible for 54% and 47% of BOD and COD loadings of the Gab-cheon River. Therefore, it is recommended to further reduce nutrient loadings from the treatment plant and also reduce surface runoff organic loading from nonpoint sources including small tributaries and storm sewers.

Statistical Characteristics and Stochastic Modeling of Water Quality Data at the Influent of Daejeon Wastewater Treatment Plant (대전시 공공하수처리시설 유입수 수질자료의 통계적 특성 및 추계학적 모의)

  • Pak, Gijung;Jung, Minjae;Lee, Hansaem;Kim, Deokwoo;Yoon, Jaeyong;Paik, Kyungrock
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.38-49
    • /
    • 2012
  • In this study, we analyze statistical characteristics of influent water quality in Daejeon waste water treatment plant and apply a stochastic model for data generation. In the analysis, the influent water quality data from year 2003 to 2008, except for year 2006, are used. Among water quality variables, we find strong correlations between BOD and T-N; T-N and T-P; BOD and T-P; $COD_{Mn}$ and T-P; and BOD and $COD_{Mn}$. We also find that different water quality variables follow different theoretical probability distribution functions, which also depends on whether the seasonal cycle is removed. Finally, we generate the influent water quality data using the multi-season 1st Markov model (Thomas-Fiering model). With model parameters calibrated for the period 2003~2005, the generated data for 2007~2008 are well compared with observed data showing good agreement in general. BOD and T-N are underestimated by the stochastic model. This is mainly due to the statistical difference in observed data itself between two periods of 2003~2005 and 2007~2008. Therefore, we expect the stochastic model can be applied with more confidence in the case that the data follows stationary pattern.

Effects of Environmental Infrastructure Regeneration in Urban Region - A Case Study of M Apartment Complex in Daejeon (도시 단지내 환경 인프라 재생 효과 고찰 - 대전시 M 아파트 단지 사례연구)

  • Park, Kiyong;Choi, Changkyoo;Shin, Jongseok;Park, Heekyeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.353-359
    • /
    • 2015
  • This study introduces a resource recycling system in urban apartment complex using four different technologies. The four technologies, called 4G, include a production technology for reclaimed water (Green water), a biogas production technology from organic waste (Green biogas), a reuse technology of rainwater (Green rainwater), and urban agropark (Green pyramid). Green water is the technology for producing the reclaimed water from wastewater, rainwater and underground water, and the average concentrations of BOD, SS, T-N and coliform of reclaimed water were 7.8mg/L, ND (not detected), 4.9mg/L and ND, respectively. Green biogas is the technology for producing biogas and effluent after treating organic wastes (e.g. food waste and night soil) discharged from households, and the average production rates of hydrogen and methane were $0.33m^3/m^3/d$ and $0.24m^3/m^3/d$, respectively. Green pyramid, agricultural farm operated by biogas and reclaimed water, provides a healthy and recreational space for residents, and plant growth rates using treated water and reclaimed water showed height of 1.32cm and weight of 112.8g. Therefore, 4G technologies can improve the recycling rate and treatment efficiencies of waste and wastewater in an apartment complex.