• Title/Summary/Keyword: Daejeon Correlator

Search Result 14, Processing Time 0.022 seconds

A STUDY ON THE RELIABILITY OF THE DAEJEON HARDWARE CORRELATOR FOR THE KVN OBSERVATION MODES (KVN 관측모드별 대전상관기의 상관결과 고찰)

  • OH, SE-JIN;ROH, DUK-GYOO;YEOM, JAE-HWAN;OH, CHUNG-SIK;LEE, SANG-SUNG;JUNG, DONG-KYU;KIM, HYO-RYOUNG;CHUNG, HYUN-SOO
    • Publications of The Korean Astronomical Society
    • /
    • v.31 no.2
    • /
    • pp.11-19
    • /
    • 2016
  • This paper presents the results of test observations toward a point source, 4C39.25, for observation modes with various bandwidths and numbers of IF streams in order to examine a reliability of the Daejeon hardware correlator performance for correlating VLBI (Very Long Baseline Interferometry) data obtained with the several observation modes of the KVN (Korean VLBI Network). We used a DiFX software correlator (DiFX) as a reference, for investigating the output visibilities from the Daejeon corelator. It is found that the band shapes of the output visibilities from two correlators are similar to each other and the correlated flux density for each baseline obtained from the Daejeon hardware correlator is lower by 3 - 7% than that from the DiFX. The flux difference is attributed to the limitation of FPGA resources and the difference of fringe rotation algorithm of the Daejeon hardware correlator. The conversion factor, 0.93 ~ 0.97, is proposed for future correlation with the Daejeon hardware correlator.

Performance Evaluation of Data Archive System for High-Speed Saving of Correlated Result of Daejeon Correlator (대전상관기의 상관결과 고속저장을 위한 데이터아카이브 시스템의 성능시험)

  • Roh, Duk-Gyoo;Oh, Se-Jin;Yeom, Jae-Hwan;Oh, Chung-Sik;Yun, Young-Joo;Jung, Jin-Seung;Jung, Dong-Kyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.55-63
    • /
    • 2014
  • In this paper, we introduce the performance evaluation of data archive system for saving correlation result of Daejeon correlator with high-data rate. Daejeon correlator supports various correlation modes, but the speed of correlation result is affected by correlator according to the integration time in each mode. Maximum data rate of Daejeon correlator is 1.4GB/s in case of C1 mode with 25.6ms integration time. In this research, the performance evaluation of the proposed data archive system is conducted for saving correlation results connected with 4 10GbE optical cable with VCS (VLBI Correlation Subsystem), which is the core system of Daejeon correlator. For the experiments, the data archive system for 2 benders was selected and benchmark test was performed. In this paper, the developed data generation program of VCS correlation result file for benchmark test and evaluation results are described.

Amplitude Correction Factors of KVN Observations Correlated by DiFX and Daejeon Correlators

  • Lee, Sang-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2015
  • We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22 GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institue (KASI) with Very Long Baseline Array (VLBA) observations at 22 GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C 454.3 and NRAO 512 which are almost unresolved for baselines in a range of 350-477 km. VLBA visibility data of the sources observed with similar baselines as KVN are selected, fringe-fitted, calibrated, and compared in their amplitudes. We found that visibility amplitudes of KVN observations should be corrected by factors of 1.14 and 1.40 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combination of two steps of 2-bit quantization in KVN observing systems and characteristics of Daejeon correlator.

  • PDF

A NEW HARDWARE CORRELATOR IN KOREA: PERFORMANCE EVALUATION USING KVN OBSERVATIONS

  • Lee, Sang-Sung;Oh, Chung Sik;Roh, Duk-Gyoo;Oh, Se-Jin;Kim, Jongsoo;Yeom, Jae-Hwan;Kim, Hyo Ryoung;Jung, Dong-Gyu;Byun, Do-Young;Jung, Taehyun;Kawaguchi, Noriyuki;Shibata, Katsunori M.;Wajima, Kiyoaki
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.125-137
    • /
    • 2015
  • We report results of the performance evaluation of a new hardware correlator in Korea, the Daejeon correlator, developed by the Korea Astronomy and Space Science Institute (KASI) and the National Astronomical Observatory of Japan (NAOJ). We conduct Very Long Baseline Interferometry (VLBI) observations at 22 GHz with the Korean VLBI Network (KVN) in Korea and the VLBI Exploration of Radio Astrometry (VERA) in Japan, and correlated the aquired data with the Daejeon correlator. For evaluating the performance of the new hardware correlator, we compare the correlation outputs from the Daejeon correlator for KVN observations with those from a software correlator, the Distributed FX (DiFX). We investigate the correlated flux densities and brightness distributions of extragalactic compact radio sources. The comparison of the two correlator outputs shows that they are consistent with each other within < 8%, which is comparable with the amplitude calibration uncertainties of KVN observations at 22 GHz. We also find that the 8% difference in flux density is caused mainly by (a) the difference in the way of fringe phase tracking between the DiFX software correlator and the Daejeon hardware correlator, and (b) an unusual pattern (a double-layer pattern) of the amplitude correlation output from the Daejeon correlator. The visibility amplitude loss by the double-layer pattern is as small as 3%. We conclude that the new hardware correlator produces reasonable correlation outputs for continuum observations, which are consistent with the outputs from the DiFX software correlator.

A Study on the Test Results and Implementation of Correlated Result Saving System using the Gluster File System (Gluster 파일시스템을 이용한 상관자료 수집 시스템 구축 및 시험고찰)

  • Yeom, Jae-Hwan;Oh, Se-Jin;Roh, Duk-Gyoo;Jung, Dong-Kyu;Hwang, Ju-Yeon;Oh, Chungsik;Kim, Hyo-Ryoung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.17 no.2
    • /
    • pp.53-60
    • /
    • 2016
  • In this paper, we introduce the implementation and test results of a new method of correlated result storage to achieve the full performance of the Daejeon hardware correlator. Recently, the observation of 8 Gbps speed, which is the maximum observational standard of KVN(Korean VLBI Network), has been performed. The correlation processing using the Daejeon hardware correlator is also required. Therefore, a new correlation result storage introduction has become necessary. The maximum correlation result output speed of the Daejeon hardware correlator is 1.4 GB/sec per 25.6 ms integration time. The conventional correlation result storage system can not cope with the maximum correlation output speed of the Daejeon hardware correlator, and the output speed is limited to 1/4. That is, among the four input ports of the Daejeon hardware correlator, the three inputs are limited to correspond to the observation rate of 1 Gbps. This new storage system uses the Gluster file system among many of the latest technologies used in storage systems. In tests that meet the maximum output rate of 1.4 GB/sec for the Daejeon hardware correlator, 350 MB/sec for each of the four optical outputs, resulting in 1.4 GB/sec in total.

A Study on Correlation Processing Method of Multi-Polarization Observation Data by Daejeon Correlator (대전상관기의 다중편파 관측데이터 상관처리 방법에 관한 연구)

  • Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Jung, Dong-Kyu;Hwang, Ju-Yeon;Oh, Chungsik;Kim, Hyo-Ryoung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.68-76
    • /
    • 2018
  • In this paper, we describe the correlation processing method of multi-polarization observation data of the Daejeon Correlator. VLBI observations include single or multiple polarized observations depending on the type of object. Polarization observations are performed to observe the characteristics of the object. During the observations of the celestial object, polarization measurements are also performed to determine the delay values and causes of changes in the object. Correlation processing of polarization observation data of the Daejeon correlator is proposed by OCTAVIA of a synchronous reproduction processing apparatus that outputs data input to each antenna unit by using an output bit selection function to convert bits and the order of the data streams is changed, And the input of the Daejeon correlator is configured to perform the polarization correlation processing by conducting correlation processing by setting the existing stream number to be the same. Correlation processing is conducted on the test data observed for the polarization correlation processing and it is verified through experiments that the polarization correlation processing method of the proposed Daejeon correlator is effective.

AMPLITUDE CORRECTION FACTORS OF KOREAN VLBI NETWORK OBSERVATIONS

  • LEE, SANG-SUNG;BYUN, DO-YOUNG;OH, CHUNG SIK;KIM, HYO RYOUNG;KIM, JONGSOO;JUNG, TAEHYUN;OH, SE-JIN;ROH, DUK-GYOO;JUNG, DONG-KYU;YEOM, JAE-HWAN
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.229-236
    • /
    • 2015
  • We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22 GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institute (KASI) with Very Long Baseline Array (VLBA) observations at 22 GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C 454.3, NRAO 512, OJ 287, BL Lac, 3C 279, 1633+382, and 1510–089, which are almost unresolved for baselines in a range of 350-477 km. Visibility data of the sources obtained with similar baselines at KVN and VLBA are selected, fringe-fitted, calibrated, and compared for their amplitudes. We find that visibility amplitudes of KVN observations should be corrected by factors of 1.10 and 1.35 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combination of two steps of 2-bit quantization in KVN observing systems and characteristics of Daejeon correlator.

A Study on Solving of Double-layer Pattern Problem in Daejeon Correlator (대전상관기에서 복층패턴 문제의 해결에 관한 연구)

  • Oh, Se-Jin;Roh, Duk-Gyoo;Yeom, Jae-Hwan;Chung, Dong-Kyu;Oh, Chung-Sik;Hwang, Ju-Yeon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.162-167
    • /
    • 2015
  • This paper describes the reason and the problem solving for the double-layer pattern of a Daejeon correlator operated in Korea-Japan Correlation Center. When the electric power of an input signal in the correlator is charged small enough to be buried in the noise, it is hard to see a signal with a specific pattern in the input signal, but when the electric power is large, a specific one is reported to be seen. By comparing data from observation with one from software correlator, it was confirmed from the analysis using the AIPS software that the amplitude gain of a source signal was affected about 3%. Therefore, in order to solve the problem of double-layer patterns, we found that a problem in the memory management module responsible for both the data input and the data serialization of the correlator is a cause for the double-layer pattern detected periodically. In other words, while data is serialized and read repeatedly in the memory area assigned to serialize the data from the serialization module, redundant last data is generated and an overlap for the memory allocation is occurred. Therefore, by modifying the program of the FPGA memory sections on serialization module to correct the problem, we confirmed that double-layer pattern is disappeared and correlation results are normally acquired.

A Study on Correlation Accuracy Improvement of the Daejeon Correlator using Expansion of Effective Bit-number (유효 비트수 확장을 이용한 대전상관기의 상관 정밀도 개선에 관한 연구)

  • Yeom, Jae-Hwan;Roh, Duk-Gyoo;Oh, Se-Jin;Oh, Chung-Sik;Jung, Jin-Seung;Chung, Dong-Kyu;Yun, Young-Joo;Ozeki, Kensuke;Onuki, Hirofumi;Kim, Yong-Hyun;Hwang, Cheol-Jun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.4
    • /
    • pp.255-260
    • /
    • 2013
  • In this paper, we propose the effective bit expansion of FFT module for improving the accuracy of correlation result of the Daejeon correlator. The Daejeon correlator based on FPGA was implemented in order to fast data processing with the fixed-point of FFT operation. In correlation result, however, the phenomenon of phase concentration to 0 degree was appeared in lower frequency area of bandwidth due to lack of operational bit. This phenomenon has an affect on the accuracy of correlation result by introducing the effect of data loss because of excluding phase concentration during analysis of observed radio source. In order to improving the accuracy of correlation result we carried out the simulation by expanding bit-number than 16-bit operation of previous FFT module within given resource limits of FPGA. Through the simulation results, the effective bit number for FFT module within used FPGA resource limits is able to expand, and we confirmed that the operational 20-bit of FFT module is effective for improving accuracy of correlation result by comparing with experimental result.

Development and Evaluation of Global Fringe Search Software for the Preprocess of Daejoen Correlator (대전 상관기의 전처리를 위한 광역 프린지 탐색 소프트웨어 개발 및 시험)

  • Oh, Se-Jin;Roh, Duk-Gyoo;Yun, Young-Joo;Yeom, Jae-Hwan;Oh, Chung-Sik;Kurayama, Tomoharu;Chung, Dong-Kyu;Jung, Jin-Seung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.176-182
    • /
    • 2014
  • This paper introduces the development of global fringe search (GFS) software for preprocessing of Daejeon Correlator. In case of the VLBI observation, a observer conducts the observation for the reference sources with strong and point-like radio stars on schedule in order to confirm the well-observedness of the radio source by the radio telescope. The correlator performs the correlation for the reference sources to detect the fringe completely. We developed the GFS software by calculating the precise delay time between each observatory based on specific observatory. Then, this software calculates the precise delay time by using the delay model (correlator model) of reference source and information of time offset between the Hydrogen Maser frequency standard and GPS (Global Positioning System) clock located in each observatory through the correlation preprocessing. In order to confirm the performance of the developed software, experiments were carried out for the reference sources and target sources observed by the KaVA (KVN and VERA Array). Experimental results show that the GFS software has effectively good performance by finding the precise delay time offset according to the comparison between the compensated delay time offset and one without compensation.