• Title/Summary/Keyword: Daeheung deposit

Search Result 3, Processing Time 0.019 seconds

Genetic Environment of the Pailou Magnesite Deposit in Dashiqiao Belt, China, and Its Comparison with the Daeheung Deposit in North Korea (중국 다스챠오벨트 팰로우 마그네사이트 광상의 생성환경 및 북한 대흥 광상과의 비교)

  • Im, Heonkyung;Shin, Dongbok;Yoo, Bong-chul
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.767-785
    • /
    • 2021
  • World-class magnesite deposits are developed in the Dashiqiao mineralized district of the Jiao-Liao-Ji Belt in China. This belt extends to the northern side of the Korean Peninsula and hosts major magnesite deposits in the Dancheon region of North Korea. Magnesite ores from the Pailou deposits in the Dashiqiao district is classified into pure magnetite, chlorite-magnetite, chlorite-talc-magnetite, and dolomite groups depending on the constituent minerals. According to the result of petrographic study, magnesite was formed by the alteration of dolomite, and, talc, chlorite, and apatite were produced as late-stage alteration minerals that replaced the magnesite. Fluid inclusions observed in magnesite are a liquid-type inclusion, with a homogenization temperature of 121-250 ℃ and a salinity of 1.7-22.4 wt% NaCl equiv. The chlorite geothermometer, indicating the temperature of hydrothermal alteration, is 137~293 ℃, slightly higher than the homogenization temperature of fluid inclusions, and the pressure is calculated to be less than 3.2 kb. For magnesite mineralization in the study area, the initially formed-dolomite was subjected to replacement by Mg-rich fluid to form a magnesite ore body, and then it was enriched through regional metamorphism and hydrothermal alteration. It seems that altered minerals such as talc were crystallized by Si and Al-rich late-stage hydrothermal fluids. These results are similar to the genetic environments of the Daeheung deposit, a representative magnesite deposit in North Korea, and it is believed that the two deposits went through a similar geological and ore genetic process of magnesite mineralization.

A Preliminary Report on the Geology and Ore Deposit of Daeheung Dolomite Mine (대흥백운석광산(大興白雲石鑛山)의 지질광상(地質鑛床) 개사보고(槪査報告))

  • Ryuu, Byeong Hwa
    • Economic and Environmental Geology
    • /
    • v.4 no.3
    • /
    • pp.113-119
    • /
    • 1971
  • The Daeheung Dolomite Mine, which is about 6km south of Danyang, Chungcheongbugdo, is coincided with almost central portion of the Danyang quardrangle scaled in 1 : 50,000. The purpose of this report is to prepare a information for the economic evaluation on the mine. Geology of the region is composed of worm-eaten limestone, crystalline limestone, crystalline dolomite rock, sandstone and shale from bottom, those are applicable to socalled Dumugol and Maggol formation of Ordovician, and batholithic biotite granite is intruded the west-side of the ditto sedimentary rocks. The dolomite bed, emplaced in bottom of the upper limestone formation, so-called Maggol formation, is about 270m in thickness, and dips $30^{\circ}{\sim}50^{\circ}$ northwest. The facies of the dolomite rock contained many brucite crystals is not only coarse-grained crystalline, but also micro crystalline in contact metasomatic parts. 25 samples were taken from the two series, A and B, in the nearly crossed direction to the strike of the dolomite bed as shown in the geological map. They were chemically analysed on the components of MgO, CaO, and $SiO_2$ as shown in Table 2. The estimate ore reserves total some 107,200,000 metric tons above the 320m level with the following average contents: MgO 21.80%, CaO 29.27% and $SiO_2$ 0.64%. It is caused by brucite minerals that MaO content in the dolomite rock is higher than pure dolomite (21.7%). The dolomite ore is possible in use for magnesian fertilizer, magnesian cement and refractory material, especially the microcrystalline dolomite ore is useful for a refractory material in furnaces of iron industries.

  • PDF

대홍활석광상 주위의 편마암류의 지화학적 특징과 공존광물의 화학적 평형

  • 이상헌;최기주
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.138-155
    • /
    • 1994
  • Granitic gneiss containing biotite banded gneiss relict around the Daeheung talc deposit are widely distributed which were formed by regional metamorphism of both epidote-amphibolite and iater greenschist facies and granitization. They were derived from same silico-aluminous rocks of sedimentary origin. The mineral assemblages, which are common in the biotite banded gneiss, formed during regional metamorphisms, are survived in the granitic gneiss. The mineral assemblages of the latter greenschist facies may be formed retrogressively from the first epidote-amphibolite facies. The chemical compositions of biotite, muscovite, and chlorite, the important constituents of the gneisses, were controlled by the bulk composition, the chemical composition of the original mineral, and environment of the regional metamorphisms and granitization. The chemical equilibrium between coexisting'minerals, especially biotite and muscovite, is relatively well established, which was controlled mainly by tschermakitic and phengitic substitutions. Cholrite was formed mainly from either biotite or muscovite by retrogressive alteration or granitization, and have nearly similar chemical compositions regardless of the occurrences. The orientation trend of the foliation, joint and quartz vein developed in the gneisses was analyzed by equal area projection which the latter two show nearly identical trend in the strike and dip. This may suggest that the hydrothermal solution was introduced along joint during wet granitization.

  • PDF