• Title/Summary/Keyword: Daedong river basin

Search Result 2, Processing Time 0.015 seconds

A Study on the Evaluation of Potential Hydro-electric Power in North Korea (북한의 수력발전가능량 산정 및 평가에 대한 연구)

  • Park, Miri;Ahn, Jaehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.41-49
    • /
    • 2018
  • This study is to analyze and evaluate water resource development potential in North Korea. The study was conducted to analyze selected potential hydropower as an indicator to evaluate water resource development potential. Potential hydropower means theoretical value about the potential capacity of river. It is used to evaluate the amount of development through the hydropower generation. For calculating potential hydropower, monthly average and annual average of rainfall for each river basin were calculated by using the data of 27 rainfall stations in North Korea. As a result of the calculation of theoretical potential hydropower by rainfall in the seven major basins in North Korea, the Aprok River basin was analyzed to be the largest with $7,562.2{\times}10^3kW$. The efficiency and utilization rate of theoretical potential hydraulic power in South Korea and North Korea was 42.3% and 36.2%, respectively. The Daedong River basin's potential hydropower utilization rate is 12.3%, which is the lowest in North Korea. In the case of Daedong River basin, more than 40% of the total population is inhabited, so demand for water and electricity is expected to be the largest. Therefore, the Daedong River basin is considered as a priority area for water resource development. The results of this study are expected to be used as basic data for future water resource development projects and research activities in North Korea.

Evaluating Applicability of SRTM DEM (Shuttle Radar Topography Mission Digital Elevation Model) in Hydrologic Analysis: A Case Study of Geum River and Daedong River Areas (수문인자추출에서의 SRTM DEM (Shuttle Radar Topography Mission Digital Elevation Model) 적용성 평가: 대동강 및 금강 지역 사례연구)

  • Her, Younggu;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.101-112
    • /
    • 2013
  • Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) offers opportunities to make advances in many research areas including hydrology by providing near-global scale elevation measurements at a uniform resolution. Its wide coverage and complimentary online access especially benefits researchers requiring topographic information of hard-to-access areas. However, SRTM DEM also contains inherent errors, which are subject to propagation with its manipulation into analysis outputs. Sensitivity of hydrologic analysis to the errors has not been fully understood yet. This study investigated their impact on estimation of hydrologic derivatives such as slope, stream network, and watershed boundary using Monte Carlo simulation and spatial moving average techniques. Different amount of the errors and their spatial auto-correlation structure were considered in the study. Two sub-watersheds of Geum and Deadong River areas located in South and North Korea, respectively, were selected as the study areas. The results demonstrated that the spatial presentations of stream networks and watershed boundaries and their length and area estimations could be greatly affected by the SRTM DEM errors, in particular relatively flat areas. In the Deadong River area, artifacts of the SRTM DEM created sinks even after the filling process and then closed drainage basin and short stream lines, which are not the case in the reality. These findings provided an evidence that SRTM DEM alone may not enough to accurately figure out the hydrologic feature of a watershed, suggesting need of local knowledge and complementary data.