• Title/Summary/Keyword: DY

Search Result 574, Processing Time 0.025 seconds

Magnetic Properties of (Nd, Dy)-Fe-B Sintered Magnets Mixed with Dy Compounds (Dy 화합물 혼합에 의한 (Nd, Dy)-Fe-B 소결자석의 자기특성 변화)

  • NamKung, S.;Lee, M.W.;Cho, I.S.;Park, Y.D.;Lim, T.H.;Lee, S.R.;Jang, T.S.
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • In order to increase the coercivity of (Nd, Dy)-Fe-B sintered magnets without much reduction of remanence, small amount of Dy compounds such as $Dy_2O_3$ and $DyF_3$ was mixed with (Nd, Dy)-Fe-B powder. After mixing, the coercivity of (Nd, Dy)-Fe-B sintered magnets apparently increased with the increase of Dy compound in the mixture. Addition of $DyF_3$ was more effective than $Dy_2O_3$ for the improvement of coercivity. Reduction of the remanence by the addition of Dy compound, however, was larger than expected mostly due to unresolved coarse Dy compound in the magnet. EPMA analysis revealed that Dy was diffused throughout the grains in the magnet mixed with $DyF_3$ whereas Dy was rather concentrated around grain boundaries in the magnet mixed with $Dy_2O_3$.

Study on the Sinterability and Pellet Properties of Dy2O3-TiO2 Oxides (Dy2O3-TiO2 산화물의 소결성 및 소결체 특성에 관한 연구)

  • Kim, Han-Soo;Joung, Chang-Yong;Kim, Si-Hyung;Lee, Byoung-Ho;Lee, Young-Woo;Sohn, Dong-Seong;Lee, Sang-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1108-1112
    • /
    • 2002
  • pellets were fabricated as a reactor control material by the powder process. Sinterability of $Dy_2O_3+TiO_2$ mixtures and phases of solid solutions were analyzed by using TMA and XRD, respectively. The thermal conductivity of pellet was determined from the measurement data of the specific heat and the thermal diffusivity of the pellet. The sinterability and the sintered density varied as a function of Dy content in $Dy_xTi_yO_z$. The pellet of $3\;g\;Dy/cm^3\;Dy_xTi_yO_z$ melted in the sintering temperature of $1580{\circ}C$. There were two phases of $Dy_2TiO_5+Dy_2Ti_2O_7$ and a single phase of $Dy_2TiO_5$ for the pellet that has the Dy content of and , respectively. The thermal conductivity of $Dy_xTi_yO_z$ was nearly constant in the temperature range of $25~600{\circ}$. It was 1.69~1.78 W/mK for the pellet sintered in and 1.49~1.55 W/mK for the pellet sintered in $1550{\circ}$.

Effect of ZnS:Mn, Dy Yellow Phosphor on White LEDs Characteristics (백색 LED의 특성에 대한 ZnS:Mn, Dy 황색 형광체의 영향)

  • Shin, Deuck-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.295-298
    • /
    • 2011
  • ZnS:Mn, Dy yellow phosphors for White Light Emitting Diode were synthesized by a solid state reaction method using ZnS, $MnSO_4{\cdot}5H_2O$, S and $DyCl_3{\cdot}6H_2O$ powders as starting materials. The mixed powder was sintered at $1000^{\circ}C$ for 4 h in an air atmosphere. The photoluminescence of the ZnS:Mn, Dy phosphors showed spectra extending from 480 to 700 nm, peaking at 580 nm. The photoluminescence of 580 nm in the ZnS:Mn, Dy phosphors was associated with $^4T_1{\rightarrow}^6A_1$ transition of $Mn^{2+}$ ions. The highest photoluminescence intensity of the ZnS:Mn, Dy phosphors under 450 nm excitation was observed at 4 mol% Dy doping. The enhanced photoluminescence intensity of the ZnS:Mn, Dy phosphors was explained by energy transfer from $Dy^{3+}$ to $Mn^{2+}$. The CIE coordinate of the 4 mol% Dy doped ZnS:Mn, Dy was X = 0.5221, Y = 0.4763. The optimum mixing conditions for White Light Emitting Diode was obtained at the ratio of epoxy : yellow phosphor = 1:2 form CIE coordinate.

Nanostructure of Optical Materials Doped with Rare-Earths: X-Ray Absorption Spectroscopy of Dy-Doped Ge-As-S Glass (희토류 첨가 광소재의 나노구조 : Dy 첨가 Ge-As-S 유리의 X-선 흡수 스펙트럼 분석)

  • Choi, Yong-Gyu;Song, Jay-Hyok;Shin, Yong-Beom;Chernov, Vladimir A.;Heo, Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.177-184
    • /
    • 2006
  • Dy $L_3$-edge XANES and EXAFS spectra of chalcogenide Ge-As-S glass doped with ca. 0.2 wt% dysprosium have been investigated along with some reference Dy-containing crystals. Amplitude of the white-line peak in XANES spectrum of the glass sample turns out to be stronger than that of other reference crystals, i.e., $DY_2S_3,\;Dy_2O_3\;and\;DyBr_3$. It has been verified from the Dy $L_3$-edge EXAFS spectra that a central Dy atom is surrounded by $6.7{\pm}0.5$ sulfur atoms in its first coordination shell in the Ge-As-S glass, which is relatively smaller than 7.5 of the $Dy_2S_3$ crystal. Averaged Dy-S inter-atomic-distance of the glass ($2.78{\pm}0.01{\AA}$) also turns out to be somewhat shorter than that of the $Dy_2S_3$ crystal ($2.82{\pm}0.01{\AA}$). Such nanostructural changes occurring at Dy atoms imply there being stronger covalency of Dy-S chemical bonds in the Ge-As-S glass than in the crystal counterpart. The enhanced covalency in the nanostructural environment of $Dy^{3+}$ ions inside the glass would then be responsible for optical characteristics of the $4f{\leftrightarrow}4f$ transitions of the dopants, i.e., increase of oscillator strengths and spontaneous radiative transition probabilities.

Electrical and Dielectric Properties of Zn-Pr-Co-Cr-Dy Oxides-based Varistors (Zn-Pr-Co-Cr-Dy 산화물계 바리스터의 전기적, 유전적 특성)

  • 남춘우;박종아;김명준;류정선
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.943-948
    • /
    • 2003
  • The microstructure and electrical characteristics of Zn-Pr-Co-Cr-Dy oxides-based varistors were investigated with Dy$_2$ $O_3$ content in the range of 0.0∼2.0 ㏖%. As Dy$_2$ $O_3$ content is increased, the average grain size was decreased in the range of 18.2∼4.6 $\mu\textrm{m}$ and the ceramic density was decreased in the range of 5.49∼4.64 g/㎤. The incorporation of Dy$_2$ $O_3$ markedly enhanced the nonlinear properties of varistors more than 9 times in nonlinear exponent, compared with the varistor without Dy$_2$ $O_3$ The varistor with 0.5∼1.0 ㏖% Dy$_2$ $O_3$ exhibited the high nonlinearity, in which the nonlinear exponent is above 55 and the leakage current is below 1.0 ${\mu}\textrm{A}$. The donor concentration and the density of interface states were decreased in the range of (4.66∼0.25)${\times}$10$\^$18//㎤ and (5.70∼1.39)${\times}$10$\^$12//$\textrm{cm}^2$, respectively, with increasing Dy$_2$ $O_3$ content. The minimum dielectric dissipation factor of 0.0023 was obtained for 0.5 ㏖% Dy$_2$ $O_3$, but further addition of Dy$_2$ $O_3$ increased it.

The Evaluation of 166Ho Product by Double Neutron Capture from HANARO Research Reactor (하나로를 이용한 중성자 이중 포획반응에 의한 166Ho 생성량 평가)

  • Kim, Jong-Bum;Choi, Kang-Hyuk
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.111-117
    • /
    • 2015
  • In this paper, production of $^{166}Ho$ by double neutron capture from HANARO research reactor was evaluated. This production approach provides $^{166}Ho$ with high specific activity. $^{164}Dy$ is transmuted into $^{165g+m}Dy$ by (n,${\gamma}$) reaction, then $^{165g+m}Dy$ is transmuted into $^{166}Dy$ by (n,${\gamma}$) reaction. At the end of neutron irradiation, population of $^{166}Dy$ atoms reaches highest point. And $^{164}Dy$ exists as a mixture with $^{165m}Dy$, $^{165}Dy$, $^{166}Ho$ and $^{165}Ho$ at this point. To obtain $^{166}Ho$ with high specific activity, Ho isotopes from irradiated target is separated out. Then $^{166}Ho$ decayed from $^{166}Dy$ is eluted at radioactive equilibrium state. At each step, the number of relevant nuclide is calculated by the state equation. The neutron irradiation time for maximum $^{166}Dy$ is calculated for 283 hour. When 100 mg target of $Dy_2O_3$ (96.8% enriched $^{164}Dy$) is used, possible activity of $^{166}Ho$ is 3.54 Ci($1.31{\times}10^{11}Bq$). For separation efficiency of Dy/Ho is 99.99%, $^{166}Ho/Ho$ is 0.62.

Photoluminescence Properties of SrSnO3:Dy3+ White Light-Emitting Phosphors (SrSnO3:Dy3+ 백색광 형광체의 발광 특성)

  • Shin, Johngeon;Cho, Shinho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.710-716
    • /
    • 2017
  • New white-light-emitting $SrSnO_3:Dy^{3+}$ phosphors were prepared using different concentrations of $Dy^{3+}$ ions via a solid-state reaction. The phase structure, luminescence, and morphological properties of the synthesized phosphors were investigated using X-ray diffraction analysis, fluorescence spectrophotometry, and scanning electron microscopy, respectively. All the synthesized phosphors crystallized in an orthorhombic phase with a major (020) diffraction peak, irrespective of the concentration of $Dy^{3+}$ ions. The excitation spectra were composed of a broad band centered at 298 nm, ascribed to the $O^2-Dy^{3+}$ charge transfer band and five weak bands in the range of 350~500 nm. The emission spectra of $SrSnO_3:Dy^{3+}$ phosphors consisted of three bands centered at 485, 577, and 665 nm, corresponding to the $^4F_{9/2}{\rightarrow}^6H_{15/2}$, $^4F_{9/2}{\rightarrow}^6H_{13/2}$, and $^4F_{9/2}{\rightarrow}^6H_{11/2}$ transitions of $Dy^{3+}$, respectively. As the $Dy^{3+}$ concentration increased from 1 to 15 mol%, the intensities of all the emission bands gradually increased, reached maxima at 15 mol% of $Dy^{3+}$ ions, and then decreased rapidly at 20 mol% due to concentration quenching. The critical distance between neighboring $Dy^{3+}$ ions for concentration quenching was calculated to be $9.4{\AA}$. The optimal white light emission by the $SrSnO_3:Dy^{3+}$ phosphors was obtained when the $Dy^{3+}$ concentration was 15 mol%.

Computer Simulation of Enhancement of Coerciviy in Nd-Fe-B/(Nd,Dy)-Fe-B Composite Magnets

  • Kawasaki, Kohei;Yanai, Takeshi;Nakano, Masaki;Fukunaga, Hirotoshi
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.145-149
    • /
    • 2011
  • The coercivity $H_c$ of $Nd_2Fe_{14}B$ magnets and $Nd_2Fe_{14}B/(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ composite magnets were calculated by computer simulation based on the micromagnetic theory under assumptions that $Nd_2Fe_{14}B$ and $(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ grains have magnetically deteriorated layers on their surfaces and diffusion of Dy from $(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ grains to $Nd_2Fe_{14}B$ ones through the contacting boundaries recovers the magnetic anisotropy of the deteriorated layers of $Nd_2Fe_{14}B$ grains. $H_c$ of $Nd_2Fe_{14}B/(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ composite magnets increased by the diffusion of Dy from $(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ grains to $Nd_2Fe_{14}B$ ones and the resultant recovery of the anisotropy field of deteriorated layers of $Nd_2Fe_{14}B$ grains. The $H_c$ vs fraction of $(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ grains curve were convex for the magnets with the degree of alignment between 0.94 and 0.99, which suggests that the above composite magnets have larger $H_c$ values than the alloy-magnets with the same Dy content, and that we can save the consumption of Dy by using these composite magnets.

Synthesis of DyF3 paste and Magnetic Properties of GBDPed Nd-Fe-B Magnets (DyF3 paste 제조 및 이를 이용한 Nd-Fe-B 입계확산 자석의 특성 연구)

  • Jeon, Kwang-Won;Cha, Hee-Ryoung;Lee, Jung-Goo
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.437-441
    • /
    • 2016
  • Recently, the grain boundary diffusion process (GBDP), involving heavy rare-earth elements such as Dy and Tb, has been widely used to enhance the coercivity of Nd-Fe-B permanent magnets. For example, a Dy compound is coated onto the surface of Nd-Fe-B sintered magnets, and then the magnets are heat treated. Subsequently, Dy diffuses into the grain boundaries of Nd-Fe-B magnets, forming Dy-Fe-B or Nd-Dy-Fe-B. The dip-coating process is also used widely instead of the GBDP. However, it is quite hard to control the thickness uniformity using dip coating. In this study, first, a $DyF_3$ paste is fabricated using $DyF_3$ powder. Subsequently, the fabricated $DyF_3$ paste is homogeneously coated onto the surface of a Nd-Fe-B sintered magnet. The magnet is then subjected to GBDP to enhance its coercivity. The weight ratio of binder and $DyF_3$ powder is controlled, and we find that the coercivity enhances with decreasing binder content. In addition, the maximum coercivity is obtained with the paste containing 70 wt% of $DyF_3$ powder.