• 제목/요약/키워드: DWRR

검색결과 12건 처리시간 0.014초

ATM 망에서 다중화기 정보에 의한 Neural UPC에 관한 연구 (Study on a Neural UPC by a Multiplexer Information in ATM)

  • 김영철;변재영;서현승
    • 전자공학회논문지C
    • /
    • 제36C권7호
    • /
    • pp.36-45
    • /
    • 1999
  • ATM망에서 트래픽 흐름을 제어하고 망 자원 사용을 효율적으로 사용하기 위해서는 폭주(Congestion)발생에 의한 망 성능 저하를 막고 폭주현상에 대처할 수 있는 적응적인 제어가 필요하다. 본 논문에서는 모든 트래픽에 대해 고정된 형태의 제어를 하는 Buffered Leaky Bucket과 적응성과 예측 기능을 갖는 신경회로망(Neural Network)을 이용하여 버퍼의 효율성을 높이고 망의 서비스 품질(QoS)로 구별되는 셀 손실율과 버퍼 지연을 테스트 및 성능 비교를 하였다. 또한 입력 트래픽의 다중화를 위해 사용되는 DWRR과 DWEDF의 셀 스케쥴링 알고리즘이 균등 지연을 만족할 수 있도록 개선하였다. 셀 스케쥴러로부터 망의 폭주 정보는 신경회로망을 이용한 Leaky Bucket에서 예측된 트래픽 손실율을 제어하고 손실율 정도에 따라 토큰 발생율과 버퍼 한계값은 제어된다. 이러한 트래픽 손실율 예측은 다음 입력 트래픽에 대한 손실과 버퍼지연을 줄일 수 있도록 제어의 효율성을 높일 수 있으며 다른 제어방식에도 응용될 수 있다. ATM 트래픽에 대한 신경회로망 학습과 예측 테스트를 위해 확률 랜덤 변수에 의해 발생된 셀 발생과 예측을 모의 실험하였으며, 이때 다양한 트래픽의 QoS가 향상되었음을 알 수 있었다.

  • PDF

ATM 망에서 트래픽 다중화 정보에 의한 적응적 UPC 알고리즘에 관한 연구 (A Study on an Adaptive UPC Algorithm Based on Traffic Multiplexing Information in ATM Networks)

  • 김영철;변재영;서현승
    • 한국정보처리학회논문지
    • /
    • 제6권10호
    • /
    • pp.2779-2789
    • /
    • 1999
  • In this paper, we propose a new neural Buffered Leaky Bucket algorithm for preventing the degradation of network performance caused by congestion and dealing with the traffic congestion in ATM networks. We networks. We justify the validity of the suggested method through performance comparison in aspects of cell loss rate and mean transfer delay under a variety of traffic conditions requiring the different QoS(Quality of Service). also, the cell scheduling algorithms such as DWRR and DWEDF used for multiplexing the incoming traffics are induced to get the delay time of the traffics fairly. The network congestion information from cell scheduler is used to control the predicted traffic loss rate of Neural Leaky Bucket, and token generation rate is changed by the predicted values. The prediction of traffic loss rate by neural networks can effectively reduce the cell loss rate and the cell transfer delay of next incoming cells and be applied to other traffic control systems. Computer simulation results performed for traffic prediction show that QoSs of the various kinds of traffics are increased.

  • PDF